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Abstract
Objective. Cultures have essential influences on emotions. However, most studies on cultural
influences on emotions are in the areas of psychology and neuroscience, while the existing affective
models are mostly built with data from the same culture. In this paper, we identify the similarities
and differences among Chinese, German, and French individuals in emotion recognition with
electroencephalogram (EEG) and eye movements from an affective computing perspective.
Approach. Three experimental settings were designed: intraculture subject dependent, intraculture
subject independent, and cross-culture subject independent. EEG and eye movements are acquired
simultaneously from Chinese, German, and French subjects while watching positive, neutral, and
negative movie clips. The affective models for Chinese, German, and French subjects are
constructed by using machine learning algorithms. A systematic analysis is performed from four
aspects: affective model performance, neural patterns, complementary information from different
modalities, and cross-cultural emotion recognition.Main results. From emotion recognition
accuracies, we find that EEG and eye movements can adapt to Chinese, German, and French
cultural diversities and that a cultural in-group advantage phenomenon does exist in emotion
recognition with EEG. From the topomaps of EEG, we find that the γ and β bands exhibit
decreasing activities for Chinese, while for German and French, θ and α bands exhibit increasing
activities. From confusion matrices and attentional weights, we find that EEG and eye movements
have complementary characteristics. From a cross-cultural emotion recognition perspective, we
observe that German and French people share more similarities in topographical patterns and
attentional weight distributions than Chinese people while the data from Chinese are a good fit for
test data but not suitable for training data for the other two cultures. Significance. Our
experimental results provide concrete evidence of the in-group advantage phenomenon, cultural
influences on emotion recognition, and different neural patterns among Chinese, German, and
French individuals.
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1. Introduction

Emotions are universal biological human responses
but interdependent with cultures, and people from
different cultural backgrounds might show culture-
specific variability in emotion generation and display.
For example, people living in cultures with stronger
social norms are more willing to regulate their neg-
ative emotions so that social harmony is not dis-
rupted [1]. This culture-specific variability not only
imposes a great challenge on affective computing
[2, 3], but also influences some digital mental health
treatments [4]. Therefore, cross-cultural emotion
recognition is a fundamental research topic for psy-
chology, neuroscience, computer science, and arti-
ficial intelligence, as the generalizability of emotion
detection systems depends on the variability across
cultures [3].

Many previous studies focused on cultural influ-
ences on emotions. Some researchers believe that
emotion semantics are shaped by different social
structures, beliefs, and other factors belonging to
what we called ‘culture,’ so discrete emotion concepts
such as ‘anger’ or ‘fear’ have different connotations in
terms of culture [5, 6]. By analyzing 2474 spoken lan-
guages, Jackson and his colleagues demonstrated that
emotion semantics vary across cultures while geo-
graphically closer cultures have more similar emo-
tion concepts [7]. Cowen and colleagues collected
2168 music samples labeled by US and Chinese sub-
jects, and found that people from different cultures
have a higher degree of identification with discrete
emotions despite variations in emotion semantics
[8]. Facial expressions, which used to be considered
universal across cultures [9], were questioned later
[10] and were recently found to have evident cul-
tural variations [11]. Researchers found evidence for
the ‘in-group advantage’ phenomenon, namely, that
emotion recognition is more accurate when judging
emotional data from one’s own cultural in-group
compared to cultural out-groups [12, 13]. Cross-
cultural affective neuroscience (CAN)was initiated in
2012 to investigate the influence of culture on the reg-
ulation of basic affective systems. Özkarar-Gradwohl
reviewed the recent development of CAN and shared
guidelines, clinical implications and ethical vision of
CAN for future research [14]. CAN claims that cul-
tural influence can be studied by observing the cul-
tural variations from the following three aspects: (1)
the level of emotional interdependency; (2) the types
of reinforced or suppressed affects; and (3) the types
of affects that accompany interdependent or inde-
pendent self-construals.

Asmentioned above,most of the existing research
that examined cultural influences on emotions is in
the fields of psychology and neuroscience. However,
from the perspective of affective computing, few stud-
ies have been carried out, and many fundamental

problems are still not fully explored. Can emotion
recognition systems built with EEG and eye move-
ments adapt to diverse cultural backgrounds? Can
EEG and eye movements capture and reflect similar-
ities and differences in aspects of emotion recognition
accuracies and emotional neural patterns for subjects
from different cultures? Is there an in-group advant-
age phenomenon for emotion recognition tasks with
EEG and eye movements?What are the contributions
of EEG and eye movements to emotion recognition
for various cultures and experimental settings? If we
want to build affectivemodels that have good cultural
generalization to accelerate the application of affect-
ive computing, what characteristics of emotion trans-
ferability might exist for different cultures, and to
what shouldwe pay attention? In this paper, to answer
these questions, we build new datasets, design three
different experimental settings, and adopt advanced
deep learning algorithms to construct affective
models.

Specifically, we extend our previous work on
Chinese–German and Chinese–French cross-cultural
emotion recognition [15, 16], and we compre-
hensively investigate the similarities and differences
among Chinese, German, and French individuals
on the task of recognizing positive, neutral, and
negative emotions from EEG and eye movements.
To fully identify the cultural similarities and influ-
ences, we carry out experiments under three different
experimental settings: intraculture subject depend-
ent (ICSD), intraculture subject independent (ICSI),
and crossculture subject independent (CCSI). We
compared unimodal and multimodal affective mod-
els to determine cultural similarities and influences.
In addition, we systematically analyze the emo-
tion recognition results, neural patterns, confusion
matrices (CMs), and attentional weight distributions
of trained affective models for three cultures. The
main contributions of this paper are summarized as
follows:

(a) By comparing the accuracies of 13 unimodal
and multimodal emotion recognition models
for native Chinese, German, and French sub-
jects under the ICSD, ICSI, and CCSI exper-
imental settings, we observe that a cultural
in-group advantage phenomenon does exist
with regard to emotion recognition from EEG
data.

(b) From the topomaps of EEG, we observe that the
γ and β bands exhibit obvious trends in different
emotions for Chinese, while for German and
French, θ and α bands exhibit common changes
for different emotions.

(c) Our experimental results indicate that EEG and
eye movements can adapt to Chinese, German,
and French cultural diversities to achieve good
emotion recognition performance and that EEG
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and eye movements have complementary char-
acteristics since multimodal methods outper-
form unimodal methods.

(d) By analyzing topomaps of EEG, attentional
weights, and the emotion transferability chart,
we conlcude that the Germans and French share
more similarities within each other in neural pat-
terns and attentional weight distributions com-
pared with Chinese, and that the data from
Chinese are a good fit for test data but not
suitable for training data for the other two
cultures.

The remainder of this paper is organized as fol-
lows. Section 2 introduces related work on cross-
cultural emotion recognition and EEG-based emo-
tion recognition. Section 3 describes the emotion
recognition models used in this paper, including
unimodal and multimodal approaches. Section 4
presents the datasets, features, and experimental set-
tings. Section 5 describes the experimental results.
Section 6 analyzes the results. Finally, conclusions and
future work are presented in section 7.

2. Related work

2.1. Cross-culture emotion recognition
Cross-cultural studies on emotions have attracted
interest in psychology and neuroscience for dec-
ades. Psychologists have found strong support that
there are indeed cultural variabilities as well as uni-
versalities. Ekman and his colleagues found that
facial expressions can be recognized across cultures
at above-chance accuracy [17]. However, the level
of accuracy varies, as European Americans achieve
higher accuracy than Asians and Africans [9]. Addi-
tionally, people more easily understand emotions
expressed by their in-group members who have
the same cultural background [13]. In a study
where people were asked to recall emotional events,
European Americans demonstrated facial expres-
sions more vividly than Hmong Americans, but
their self-reports and heart rates were similar, sug-
gesting that Western and Eastern cultures influence
how people display their emotions [18]. Another
study that investigated mixed emotions revealed that
although North Americans and Japanese both feel
similarly toward negative events (e.g. outperformed
by other people), when they confront the same
positive event (e.g. winning a competition), North
Americans mostly feel good, while Japanese report
feeling both happy and worried about other people’s
feelings at the same time [19].

Lomas proposed that positive psychology field
would benefit from greater levels of cross-cultural
engagement, awareness, and understanding. He cre-
ated a lexicography of relevant ‘untranslatable’ words

to discuss cross-cultural variation and the implic-
ations that such variation has for psychology [20].
Scherer and Fontaine analyzed a large-scale data set
with ratings of affective features covering all compon-
ents of the emotion process for 24 emotion words in
27 countries. They performed a series of hierarchical
regression analysis. Their results are highly consistent
with the claim that appraisal patterns determine the
structure of the response components, which in turn
predict central dimensions of the feeling component
[21].Many theories have proposed explaining the cul-
tural variations, including the independent vs. inter-
dependent self-concept [22]. These cultural factors
influence people’s affective valuations [23], emotion
perception [24], regulation [25], and mental well-
being [26].

Neuroscience complements the findings in psy-
chology, trying to determine the fundamental mech-
anism in our brain that is related to cultural
similarities and differences [27]. Compared with psy-
chological studies that mainly depend on subjective
self-report and behavioral observation, neuroscience
uses newmethodologies, such as brain imaging, EEG,
or even genetic methods, to investigate this prob-
lem [28]. Many researchers have found substan-
tial evidence of culturally specific neural patterns
that differentiate emotional processes. For example,
Murata and his colleagues designed an experiment
for studying emotion process of different cultures.
They asked Asian and European American par-
ticipants to either attend or suppress expressions
of emotion while exposing to either unpleasant
or neutral pictures. They then compared parietal
late positive potential (LPP) and found that Asians
showed a significant decrease in parietal LPP while
European Americans did not have such a decrease
but exhibited increased activation in the frontal
area [29].

Greck and colleagues adopted a task of empathy
with anger to study how culturemodulate brain activ-
ities. They collected fMRI data while Chinese and
German subjects watching familiar angry, familiar
neutral and unfamiliar neutral pictures. They found
that Chinese tend to value more of the harmony and
regulate their emotions accordingly, whereas German
show more activation in reasoning, suggesting more
emphasis on the inference of others’ feelings [30].
When European Americans and Chinese individu-
als were asked to rate targets with excited or calm
smiles, Chinese individuals showed stronger vent-
ral striatal (VS) activity (related to the reward pro-
cess in the brain) when they viewed calm smiles,
whereas European Americans demonstrated stronger
VS activity on excited smiles [31].

Özkarar-Gradwohl reviewed gender effects of the
affective neuroscience personality scales (ANPS) in
15 countries, and the results showed that gender
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differences on the ANPS were variable for different
classes of basic emotions. Besides, the results were
consistent with gender effects reported in the Big
Five personality literature, including a trend of gender
differences increasing when moving from ‘East’ to
‘West’ [32]. Tompson and colleagues tested the hypo-
thesis that the carriers of 7- or 2-repeat allele of
the dopamine D4 receptor gene (DRD4) may be
more likely to show culturally typical response pat-
terns than non-carriers. They let 194 EuropeanAmer-
icans and 204 east Asians rated the frequency of
actually experiencing various positive and negative
emotions in a typical week, and they found a sig-
nificant culture × DRD4 interaction for emotional
experience, east Asian carriers reported experiencing
greater emotional balance than non-carriers, while
European Americans showed a stronger positivity
bias [33].

Lin and colleagues studied the problem that how
culture plays a role in the neuralmechanisms involved
in intergroup perception. They recruited European
Americans and Chinese participants in an emotion
perspective-taking task where they viewed images of
ingroup and outgroup members while undergoing
an fMRI scan. They found culture-specific patterns
of neural activation in the fusiform gyrus when per-
ceiving ingroup and outgroupmembers and fusiform
and amygdala showed different functional connectiv-
ity for different cultures [34].

Cross-cultural emotion recognition has been a
highlighted topic in affective computing in recent
years. Researchers have investigated this problem
mostly from the perspective of human communica-
tion systems such as facial expressions [11, 35, 36],
acoustic or lexical information [37, 38], body pos-
ture [39], or multimodal analysis [40–42]. Over-
all, these studies presented a certain level of uni-
versality across cultures but also revealed cultural
specificity, as the systems were observed to have a
better performance within the same cultural group.
Incorporating physiological data gives researchers
a chance to explore whether emotion is influ-
enced by cultural display rules, which reflected in
overt behaviors such as facial expressions or speech,
or is deeply a state that brings us physiological
changes [43].

2.2. EEG-based emotion recognition
To build a good emotion recognition system, our
first target is to obtain a high recognition accuracy.
Traditionally, researchers have proposed various fea-
tures to capture emotion characteristics and tried
manymachine learning methods to achieve good res-
ults. Zheng and colleagues extracted six different EEG
features in five frequency bands to examine their
emotion recognition performance and found stable
patterns for different emotions [44]. Garía-Martínez
et al focused on EEG nonlinear features for emotion

recognition, and gave a good summary of recent
work using nonlinear features [45]. With the rapid
development of deep learning methods, deep learn-
ing models such as the deep belief networks [46],
convolutional neural networks [47–49], long-short
term memory networks [50, 51], and deep graph
neural networks [52, 53] have been applied to EEG-
based emotion recognition and havemade significant
improvements compared with traditional machine
learning approaches.

EEG data are nonstationary signals, meaning that
signals from different subjects might have significant
variability, which causes trouble for emotion recog-
nition systems. Zheng and Lu applied transfer com-
ponent analysis and transductive parameter transfer
methods to address this problem and achieved a great
improvement compared with nontransfer methods
[54]. Li and colleagues proposed a multisource trans-
fer learning method that reduced the reliance on the
labeled data amount by treating existing persons as
sources and new persons as the target [55]. Zhao and
colleagues proposed a plug-and-play domain adapt-
ation framework where the model is adjusted with
unlabeled data for calibration so that it can be applied
to a new person [56].

Recently, many researchers applied generative
adversarial networks (GANs) to address data aug-
mentation problems since EEG data are challenging
to collect massively. Hartmann et al proposed the
EEG-GAN framework to generate EEG data, and they
evaluated the generated data with the inception score,
Frechet inception distance, and sliced Wasserstein
distance. Their experimental results indicated that
the proposed framework can generate naturalistic
EEG samples [57]. Luo and colleagues applied con-
ditional Wasserstein GAN (cWGAN), selective vari-
ational autoencoder, and selective cWGAN to gen-
erate new EEG features and evaluated the perform-
ance with and without data augmentation. Their
results indicated the effectiveness of the proposed
methods [58].

2.3. Multimodal emotion recognition
Since emotions are complex cognitive processes, mul-
timodal signals, which capture more aspects of emo-
tions, are better than unimodal signals. Many pre-
vious studies adopt EEG and eye movements for
emotion recognition tasks because EEG can reflect
emotional changes in the central neural system and
eyemovements reflect periphysiological changes [59].
By fusing EEG and eye movements, researchers
improved the performance of emotion recognition
models.

The first way to fuse multiple modalities is at the
feature level, and themost commonmethod is to con-
catenate features from different modalities into a new
feature [60]. In addition to feature-level fusion, there
are decision-level fusion strategies in which we build
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classifiers for eachmodality and fuse the decision val-
ues with some mathematical operations. Lu and col-
leagues applied MAX fusion, SUM fusion, and fuzzy
integral fusion strategies to fuse EEG and eye move-
ment features, and they found complementary prop-
erties between EEG and eye movement data [60].
Another way to fuse multimodal signals is to build
a deep learning model to fuse them, and various
network structures have been proposed. Baltrušaitis
and colleagues summarized these fusion structures
and classified these multimodal deep learning mod-
els into multimodal joint representation methods
and multimodal coordinate representation methods
[61]. Zheng and colleagues proposed EmotionMeter
which is a multimodal fusion framework for emotion
recognition [62]. Liu and colleagues compared both
joint-representation-based models and coordinated-
representation-based models on several multimodal
emotion datasets [63].

3. Methods

3.1. Unimodal models
For unimodal affective models, we examined sup-
port vector machines (SVMs) with a linear kernel, k-
nearest neighbor (KNN), logistic regression (LR), and
a deep neural network (DNN). To reduce the cost of
training time, we first evaluated traditional machine
learningmethods (i.e. SVM, KNN, and LR)with vari-
ous EEG features to determine the best EEG feature
and EEG frequency band in terms of accuracy. We
also evaluated the significance of the selected EEG fea-
tures with three-way analysis of variance (ANOVA).
Then, we evaluated the DNN with the selected EEG
features and eyemovement features. TheDNNmodel
used in this paper contains three hidden layers and
a three-dimensional output layer corresponding to
three emotion categories.

3.2. Multimodal models
For multimodal affective models, we evaluated three
traditional feature fusion approaches and two deep
learning methods. For traditional fusion approaches,
we examined concatenation fusion, MAX fusion, and
fuzzy integral fusion [63]. For deep learning fusion
methods, we examined the bimodal deep autoen-
coder (BDAE) anddeep canonical correlation analysis
with an attention mechanism (DCCA-AM).

3.2.1. Bimodal deep autoencoder
BDAE was proposed by Ngiam and colleagues [64].
In our previous work, we adopted BDAE to mul-
timodal emotion recognition [65]. The BDAE train-
ing procedure includes encoding and decoding.
In the encoding phase, we trained two restricted
Boltzmannmachines (RBMs) for EEG and eye move-
ment features. These two hidden layers are concat-
enated together, and the concatenated layer is used

as the visual layer of a new upper RBM. In the
decoding stage, we unfolded the stacked RBMs to
reconstruct the input features. Finally, we used a
back-propagation algorithm to minimize the recon-
struction error.

3.2.2. Deep canonical correlation analysis with
attention mechanism
The original DCCAwas proposed byAndrew and col-
leagues [66]. It computes representations of multiple
modalities by passing them through multiple stacked
layers of nonlinear transformations. In this paper, we
extend the original DCCA framework by adding an
attention-based fusion module. Figure 1 depicts the
framework of DCCA with the attention mechanism
(DCCA-AM) used in this paper.

Let X1 ∈ RN×d1 and X2 ∈ RN×d2 be the instance
matrices for two modalities. Here, N is the number
of instances, and d1 and d2 are the dimensions of the
extracted features for these two modalities. We build
two DNNs for the two modalities to transform the
raw features nonlinearly as follows:

O1 = f1(X1;W1), (1)

O2 = f2(X2;W2), (2)

whereW1 andW2 denote parameters for the nonlin-
ear transformations, O1 ∈ RN×d and O2 ∈ RN×d are
the outputs of the neural networks, and d denotes the
output dimension of DCCA.

The goal of DCCA is to jointly learn the paramet-
ers W1 and W2 for both neural networks so that the
correlation of O1 and O2 is as high as: possible:

(W∗
1 ,W

∗
2 ) = argmax

W1,W2

corr( f1(X1;W1),F2(X2;W2)).

(3)

We use the backpropagation algorithm to update
W1 and W2. Let Ō1 = O ′

1 − 1
NO

′
11 be the centered

output matrix (similar to Ō2). We define Σ̂12 =
1

N−1 Ō1Ō ′
2, Σ̂11 =

1
N−1 Ō1Ō ′

1 + r1I. Here, r1 is a reg-

ularization constant (similar to Σ̂22). The total cor-
relation of the top k components of O1 and O2 is
the sum of the top k singular values of matrix T=

Σ̂
−1/2
11 Σ̂12Σ̂

−1/2
22 . In this paper, we take k= d, and the

total correlation is the trace of T:

corr(O1,O2) =

(
tr(T ′T)

)1/2

. (4)

The CCA loss is the negative of total correlation:

Lcca =−corr(O1,O2). (5)

Finally, we calculate the gradients with the singular
decomposition of: T= UDV ′,

∂corr(O1,O2)

∂O1
=

1

N− 1
(2∇11Ō1 +∇12Ō2), (6)
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Figure 1. Framework of DCCA with attention mechanism. Different modalities are transformed by corresponding deep neural
networks separately. Outputs (O1,O2) are regularized by CCA constraint. Attention-based fusion strategy (with gray background)
is adopted to fuse O1 and O2, and fused features are used for emotion recognition. We update parameters to minimize negative
CCA metric and classification loss simultaneously.

where

∇11 =−1

2
Σ̂

−1/2
11 UDU ′Σ̂

−1/2
11 , (7)

∇12 = Σ̂
−1/2
11 UV ′Σ̂

−1/2
22 , (8)

and ∂corr(O1,O2)/∂O2 has a symmetric expression.
With O1 and O2, we build an attentional module to
fuse the transformed features.

For the attention-based fusion module (layers
with gray background in figure 1), first, we initialize
an attention layer with parametersWattn, and then we
calculate the inner product of attentional weights and
outputs of different modalities and apply softmax to
normalize the results to obtain attentional weights α1

and α2, respectively:

α̂1 =< O1,Wattn >,

α̂2 =< O2,Wattn >,

α1,α2 = softmax(α̂1, α̂2),

(9)

where Wattn is the hyperparameter to compute
attentional weights. After calculating the attentional
weights, we extract the fused features as follows:

O= α1 O1 +α2 O2. (10)

Next, a fully connected layer is added as a classifier
with which we can calculate the classification loss.
Under attention-based fusion settings, all updates can
be calculated with backpropagation, and we optim-
ize the CCA loss and cross-entropy classification loss
simultaneously:

L= γ1 Lcca + γ2 Lclassification, (11)

where L is the total loss, and γ1 and γ2 are hyperpara-
meters.

4. Datasets, features, and experimental
settings

4.1. Datasets
4.1.1. Chinese dataset
For Chinese, we use the multimodal version of the
SEED dataset, which contains EEG and eye move-
ments. The SEED dataset was developed by Zheng
and Lu [67]. A total of 15 Chinese film clips of
three emotions (positive, neutral, and negative) were
chosen from a pool of materials as stimuli used in
the experiments, and every participant took part in
the experiment three times. In this paper, we adop-
ted amultimodal version of SEEDwhere EEG and eye
movement data of 36 sessions from 12 native Chinese
participants (6 males and 6 females; MEAN: 23.08,
Std: 2.02) are included.

4.1.2. German dataset (SEED-GER)8

The German emotion dataset we used in this paper
is the same as the dataset used in our previous work
[15]. Eighteen stimuli materials of three emotion
categories (i.e. positive, neutral, and negative) were
selected from the dataset developed by Scharfer and
colleagues [68]. All stimuli materials are in English
since there is no German version of the materials.
Eight native German participants (7 males, 1 female;
MEAN: 22.25, Std: 1.98) took part in our experiments
three times. The subjects watched thesematerials dur-
ing the experiment, and EEG and eye movements
were acquired simultaneously. Due to equipment fail-
ure and subjects quitting, we collected 20 sessions of
multimodal data in which four subjects completed
the three sessions, and the other four subjects com-
pleted only two sessions.

8 TheGerman dataset (SEED-GER) used in this paper will be freely
available to the academic community as a subset of SEED.
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4.1.3. French dataset (SEED-FRA)9

In our previous study [16], French stimuli materials
were selected from the dataset developed by Schar-
fer and colleagues [68]. Note that the same stimuli
dataset as that for the German dataset were used,
but the movie clips used were different for German
and French. Twenty-one film clips of three emo-
tions (i.e. positive, neutral, and negative) were used
in our experiment. We recruited 8 native French sub-
jects (5 males, 3 females; MEAN: 22.50, Std: 2.78).
Each took part in the experiments three times and
their EEG and eye movement data were collected
simultaneously.

All participants were undergraduate/graduate/
exchange students from Shanghai Jiao Tong Uni-
versity. They are right-handed and have normal
or corrected-to-normal vision and normal hearing
without any mental diseases for the emotion exper-
iments, and the participants got paid for the particip-
ation in the experiments.

The subjects were informed about the experiment
procedure in advance, and they were instructed to sit
comfortably, watch the movie clips attentively, and
refrain as much as possible from overt movements.
At the end of each movie clip, the subject was asked
to fill in a self-assessment form immediately to record
his/her true emotion (positive, negative, neutral, or
others) and its intensity (ranges from 1 to 5, 1 means
no intensity and 5 means strong intensity) during
watching the movie clip. We only used the data where
the correct emotion was elicited, and the emotion
intensity was greater than or equal to 3.

The data acquisition devices for Chinese, Ger-
man, and French are all the same. We use Neuro-
scan SynAmps10 amplifier to acquire EEG signals. The
sampling rate is 1000 Hz and there are 62 channels.
The eye movement signals are acquired with SMI eye
tracking glasses11.

The main reasons for choosing native German
and French subjects instead of subjects with other
cultural backgrounds are that our laboratory has
exchange students from Germany who can recruit
native German subjects, and we have graduate stu-
dents from The SJTU-ParisTech Elite Institute of
Technology who can recruit native French subjects.

The research was conducted in accordance with
the principles embodied in the Declaration of Hel-
sinki and in accordance with local statutory require-
ments. All subjects gave their informed consent
for inclusion before they participated in the study,
and they are fully informed about the experimental
procedure. This study does not involve identifiable
human subjects.

9 The French dataset (SEED-FRA) used in this paper will be freely
available to the academic community as a subset of SEED.
10 https://compumedicsneuroscan.com/product/synamps-rt-64-
channel-eeg-erp-ep-amplifier/.
11 https://en.wikipedia.org/wiki/SensoMotoric_Instruments.

4.2. Feature extraction
4.2.1. EEG feature extraction
Before extracting EEG features, we preprocessed the
raw EEG signals with the Curry 7 software12. The
raw EEG signals are filtered with a 0.2–50 Hz band-
pass filter, and eye blinking artifacts are removed
with a threshold algorithm, and finally the pro-
cessed EEG signals are down sampled from 1000 Hz
to 200 Hz.

According to the existing work [44, 52], the fol-
lowing features are efficient for EEG-based emotion
recognition: power spectral density (PSD), differen-
tial entropy (DE), differential asymmetry (DASM),
rational asymmetry (RASM), and asymmetry (ASM).
In this paper, we extracted these five kinds of features
from raw EEG, and the feature extraction procedures
were the same as those used in [67]. Under unimodal
conditions, we calculated EEG features with sliding
windows of 1 s. For multimodal settings, 4-s sliding
windows were used tomake sure there are same num-
ber of samples as eye movement features.

4.2.2. Eye movement features
The eye movements in the Chinese, French, and Ger-
man multimodal datasets contain statistical informa-
tion such as pupil diameter and blink duration, and
computational statistics such as temporal and fre-
quency features. We extracted the same 33 eye move-
ment features as in our previous study [62].

We extract eye movement features with slid-
ing windows of 4 s. The reasons for 4 s sliding
window are as follows: (1) Eye movement signals
change slowly during the movie watching task. For
example the eye movement tracker needs several
seconds to detect blinking and fixation. If we use
1 s sliding window, a lot of the features extracted
are zero. When using 4 s sliding window, there is a
good balance for both sample number and feature
quality. (2) In previous studies, 4 s sliding window
performs well for multimodal emotion recognition
[62, 63]. Therefore, we used the same setting in this
paper.

4.3. Expeirmental settings
In this paper, we design three different experimental
settings to investigate the similarities and differences
among Chinese, German, and French populations.
For the intraculture setting, we construct unimodal
and multimodal affective models in both subject-
dependent and subject-independent conditions. For
the cross-cultural setting, we build unimodal and
multimodal affective models in subject-independent
conditions since the subject-dependent condition
does not exist. The relationships among the three dif-
ferent experimental settings used in this paper are
illustrated in figure 2.

12 https://www.compumedics.com.au/en/products/curry/.
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Figure 2. Three experimental settings used in this paper. Subject-dependent situation in cross cultural setting is not available
because the subjects from different cultures will never be the same.

• Intraculture subject-dependent (ICSD). For the
ICSD setting, we separate data from the same
session into training and test samples. Specifically,
for theChinese dataset, we use the samples from the
first nine clips as training samples and the samples
from the remaining six clips as test samples. For the
German and French datasets, the training and test
ratios are 12:6 and 12:9, respectively.

• Intraculture subject-independent (ICSI). For the
ICSI setting, we use a leave-one-subject-out cross-
validation (CV) scheme to evaluate the perform-
ance of emotion recognitionmodels. For every sub-
ject from the datasets, we use the data from his/her
three sessions (or two sessions for the German
dataset) as testing samples and data of the other
subjects as training samples.

• Cross-culture subject-independent (CCSI). For the
CCSI setting, we use samples from one culture as
training data and samples of the other two cultures
as test data.

4.4. Parameter tuning
For the KNN classifier, we tuned the number of
neighbors n in the range of [3,10] to find the best
hyperparameter. For the LRmodel, we use the default
function provided by the scikit-learn module. For
the SVM classifier, we adopted the function in the
scikit-learnmodule with a linear kernel, andwe tuned
the parameter C with grid searching from the sets
of [2−10,2−9, · · · ,210] and [0.1,20] with a step size
of 0.5 for the large-step and small-step situations,
respectively.

For the DNN model used in this paper, there
are three hidden layers with 128, 64, and 32 hidden
units. The output layer has three units correspond-
ing to three emotions. The nonlinear activation func-
tions used are ReLU or LeakyReLU according to dif-
ferent cultures. In addition, we added a dropout layer
and a batchnorm layer for Germany. The optimiza-
tion algorithm was RMSProp, and we set the epoch
number to 15 000. The best learning rate was searched
from 0.00 001 to 0.5 for three cultures.

For the BDAE method, training epochs
and hidden units for all RBMs were searched

from sets [1000,700,500,300,200,100] and
[700,500,200,170,150,130,110,90,70,50], respect-
ively. We used the RMSProp optimizer, and the learn-
ing rate was set to 0.0001. Since the BDAE outputs the
fused samples, we use the SVM classifier for emotion
recognition tasks.

For the DCCA-AM method, the hidden units for
twononlinear transformnetworks f 1 and f 2 were ran-
domly searched from ranges [100,200] and [20,50],
respectively. The hyperparameters O1 and O2 was set
to 12, γ1 = 0.1 and γ2 = 1.0 according to our previ-
ous paper [63]. We also used the RMSProp optimizer
and set the epoch number to 100 and the learning rate
to 0.0001.

The source code of this paper can be downloaded
at the following link: https://github.com/csliuwei/
CrossCultureCode.

5. Experimental results

5.1. Intraculture subject dependent (ICSD) results
In section 5.1.1, we first train KNN, LR, and SVM
with various EEG features and eye movement fea-
tures to determine the best features. In section 5.1.2,
we compare DE features and eye movement fea-
tures for unimodalmodels trained by both traditional
machine learning and deep learning algorithms. In
section 5.1.3, we report the performance of five mul-
timodal fusion strategies.

For the ICSD setting, we separate samples from
the same session of one subject into training set and
test set. For Chinese, the subject watched 15 film clips
during one session and we use the samples from the
first 9 trials as training data and the samples from
the last 6 trials as test data. For German, the sub-
ject watched 18 movie clips during one session and
samples from the first 12 trials are as training set and
samples from the last 6 trials are as test set. For French,
there are 21 trials during one session, and the ratio for
training data and test data are 12:9.

5.1.1. Feature and classifier selection
We first trained KNN, LR, and SVM classifiers with
five EEG features (DASM, RASM, ASM, PSD, and
DE) and eyemovement features forChinese,German,
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Table 1. Comparison of average accuracy (%) and standard
deviation (%) of three classifiers with five different features in
ICSD setting. The best results are in bold.

KNN LR SVM

Acc, Std Acc, Std Acc, Std

Chinese

DASM 62.63, 15.69 71.85, 14.63 74.99, 13.62
RASM 62.62, 15.56 72.58, 14.91 74.92, 13.68
ASM 63.05, 15.66 71.85, 14.63 74.50, 13.33
PSD 67.05, 15.15 74.56, 12.70 77.96, 11.74
DE 72.03, 11.85 80.51, 10.13 83.44, 11.10

German

DASM 48.34, 16.79 57.53, 17.14 60.44, 16.66
RASM 49.54, 17.06 57.63, 16.42 60.47, 16.17
ASM 49.18, 16.06 57.96, 16.42 61.08, 16.17
PSD 51.84, 14.37 61.00, 18.76 59.46, 17.56
DE 53.97, 17.71 62.74, 19.34 65.47, 16.93

French

DASM 44.03, 11.39 49.97, 12.28 55.62, 14.32
RASM 44.23, 12.28 49.85, 12.37 55.83, 14.89
ASM 43.89, 11.84 50.02, 12.72 57.79, 14.86
PSD 45.23, 9.67 54.60, 10.23 62.13, 12.10
DE 46.09, 11.98 56.98, 12.78 64.84, 13.64

and French. Table 1 lists the emotion recognition res-
ults, and we observe that

• The DE features have the best performance for all
three cultures and the best classification accuracies
for Chinese, German and French cultures are
83.44%, 65.47%, and 64.84%, respectively.

• SVMhas the best performance under all conditions
for three cultures.

In general, it is clear that the DE features out-
perform the other four EEG features and that SVM
outperforms the other two classifiers for all three
cultures.

We performed a three-way ANOVA with cultures
(three levels), classifiers (three levels), and features
(five levels) as factors. There were significant main
effects of features (p< 0.001), classifiers (p< 0.001),
and cultures (p< 0.001), and there were no signific-
ant interactions. The main effect of features is sig-
nificant which means that the DE features have bet-
ter performance than other features in general. The
main effect of classifiers is significant indicating that
the SVM classifier has better recognition accuracies
than the other classifiers.

In addition, we investigated how different fre-
quency bands affect the emotion recognition results.
We trained the SVM classifiers by using the DE fea-
tures of the δ band, θ band, α band, β band, γ band,
and the direct concatenation of all five bands, namely,
Xtotal:

Xtotal = [Xδ,Xθ,Xα,Xβ ,Xγ ], (12)

where Xδ,Xθ,Xα,Xβ , and Xγ represent DE features
of individual bands.

The emotion recognition performance of indi-
vidual frequency bands is given in table 2. Two con-
clusions can be drawn from table 2: (1) For all

Table 2. Comparison of mean accuracies (Acc (%)) and standard
deviations (Std (%)) of the SVM classifiers with DE features of
five individual frequency bands and their direct concatenation
(Total) under ICSD setting. The best results are in bold.

Delta Theta Alpha Beta Gamma Total

Chinese
Acc 63.27 67.66 68.56 77.63 76.63 83.44
Std 11.82 13.50 13.35 13.54 14.36 11.10

German
Acc 46.61 53.99 59.36 63.56 62.25 65.47
Std 10.77 16.11 14.63 19.62 18.36 16.93

French
Acc 41.93 52.43 53.74 61.08 56.37 64.84
Std 15.84 11.73 10.99 12.51 15.10 13.64

Table 3. Comparison of mean accuracies (Acc (%)) and standard
deviations (Std (%)) of different classifiers with DE features of
ICSD setting. The best results are in bold.

Chinese German French

Acc Std Acc Std Acc Std

KNN 72.03 11.85 53.97 17.71 46.09 11.98
SVM 83.44 11.10 65.47 16.93 64.84 13.64
LR 80.53 10.13 62.74 19.34 56.98 12.78
DNN 86.53 9.51 70.87 9.54 67.52 10.69

three cultures, high-frequency bands (i.e. β and γ
bands) have better performance than those of lower-
frequency bands, and this finding is consistent with
the existing work [67]. (2) For all three cultures,
the best results are achieved with Xtotal, suggesting
that features from lower-frequency bands contain
emotional information that complements higher-
frequency bands.

We performed a two-way ANOVA with cultures
(three levels) and bands (six levels) as factors. There
were significant main effects of bands (p< 0.001)
and cultures (p< 0.001), and the interaction effect of
bands × cultures is not significant (p= 0.901). The
main effect of bands indicated that total bands of the
DE features performed better than the other features.

The experimental results of tables 1 and 2 indic-
ate that the DE feature is the best feature among these
five features, and the SVM classifier performs best
among the three traditional classifiers. In the follow-
ing sections, we adopt the DE features to build unim-
odal and multimodal affective models by using deep
learning algorithms.

5.1.2. Performance of unimodal models
In addition to shallow models, we trained a five-layer
DNN with the DE features. The experimental results
are listed in table 3. The DNN classifier outperforms
the SVM classifier for all three cultures with emotion
recognition accuracies of 86.53% forChinese, 70.87%
for German, and 67.52% for French.

For table 3, we carried out two-way ANOVA with
cultures (three levels) and classifiers (four levels) as
factors. The main effects of cultures (p< 0.001) and
classifiers (p< 0.001) were significant, and there was
no significant interaction effect (p= 0.703).
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Table 4. Comparison of mean accuracies (Acc (%)) and standard
deviations (Std (%)) of unimodal classifiers with eye movement
features in ICSD setting. The best results are in bold.

Chinese German French

Acc Std Acc Std Acc Std

KNN 65.35 21.52 64.80 30.09 45.06 17.49
SVM 75.49 17.00 78.72 21.67 51.26 15.26
LR 73.19 18.47 75.15 25.73 46.60 11.92
DNN 77.45 15.88 79.87 18.22 64.52 15.61

For eye movement features, we also evaluated
the performance of different classifiers. The experi-
mental results are given in table 4. Similar to the per-
formance of EEG-based emotion recognition, DNN
performs best among four different classifiers for
all three cultures. Specifically, the best recognition
accuracies for Chinese, German, and French coun-
tries are 77.45%, 79.87%, and 64.52%, respectively.
We then performed a two-way ANOVA test with
cultures (three levels) and classifiers (four levels) as
factors. The main effects of cultures (p< 0.001) and
classifiers (p< 0.001) were significant, and there was
no significant interaction effect (p= 0.513).

From tables 3 and 4, the EEG modality is better
at emotion recognition than eye movement modality
for Chinese and French individuals, but eye move-
ment features outperform EEG features for German
individuals.

5.1.3. Performance of multimodal models
We evaluated five multimodal fusion strategies: con-
catenation fusion, MAX fusion, fuzzy integral fusion,
the BDAE method, and DCCA with an attention
mechanism. From table 5, DCCA-AM had the best
performance among these five strategies with 92.79%,
88.63%, and 80.71% recognition accuracies for
Chinese, German, and French individuals, respect-
ively. We then performed a two-way ANOVA test
with cultures (three levels) and classifiers (five levels)
as factors. The main effects of cultures (p< 0.001)
and classifiers (p< 0.001) were significant, and there
was no significant interaction effect (p= 0.611).

From table 5, we see that the deep-learning-
based multimodal fusion methods perform better
than both unimodal models and traditional fusion
methods. Therefore, we conclude that multimodal
signals improve emotion recognition performance
and that deep learning models capture multimodal
information more effectively than traditional fusion
strategies.

5.2. Intraculture subject independent (ICSI) results
In the ICSD setting, both training data and test data
are from the same subject. However, we also want to
investigate the performance of emotion recognition
models trained and tested with different subjects.

In the ICSI setting, we used a leave-one-subject-
out cross-validation scheme where training data and

Table 5. Comparison of mean accuracies (Acc (%)) and standard
deviations (Std (%)) of different multimodal fusion methods in
ICSD setting. The best results are in bold.

Concat MAX Fuzzy BDAE DCCA-AM

Chinese
Acc 82.43 80.81 84.22 90.58 92.79
Std 13.76 13.78 12.08 10.26 8.21

German
Acc 74.54 78.10 83.45 88.05 88.63
Std 20.48 16.04 16.27 14.94 10.87

French
Acc 69.07 62.29 68.31 80.32 80.71
Std 17.32 16.73 17.53 11.04 13.09

test data are fromdifferent subjects: samples fromone
subject are used as test data, and samples from the
other subjects are used as training data.

5.2.1. Performance of unimodal models
We evaluate the emotion recognition performance of
KNN, SVM, LR, and DNN with DE features and eye
movement features. The recognition accuracies are
listed in table 6. For EEG features, DNN performs
best among all four classifiers, and the recognition
accuracies for Chinese, German, and French classifi-
ers are 82.81%, 65.87%, and 64.18%, respectively. For
eye movement features, DNN also has the best per-
formance and achieves 80.26%, 84.28%, and 79.85%
accuracies. We performed a three-way ANOVA test
with cultures (three levels), classifiers (four levels),
and modalities (two levels) as factors. The main
effects of cultures (p< 0.001), classifiers (p< 0.001),
and modalities (p< 0.001) are all significant. How-
ever, the main effects of modalities and cultures were
qualified by a significant interaction effect of modal-
ities× cultures (p< 0.001). In addition, there were no
other significant interaction effects.

According to table 6, we find that eye move-
ments have a better emotion transferability than EEG
for German and French individuals and have com-
parable performance for Chinese individuals. Here,
we use the term ‘emotion transferability’ to repres-
ent the emotion recognition ability of an emotion
model where the training subject and test subject are
different.

5.2.2. Performance of multimodal models
For multimodal fusion evaluation, we adopt three
traditional fusion strategies (concatenation, MAX,
and fuzzy integral) and two deep-learning-based
fusion strategies (BDAE and DCCA-AM). As we
can see from table 7, DCCA-AM has the best per-
formance for Chinese (84.04%), French (79.57%)
and German (82.07%). We performed a two-way
ANOVA test with cultures (three levels) and classi-
fiers (five levels) as factors. The main effects of cul-
tures (p< 0.001) and classifiers (p< 0.001) are sig-
nificant. However, these main effects were qualified
by a significant interaction effect of classifiers × cul-
tures (p< 0.001). In addition, we find that the advant-
ages of deep-learning-based models over traditional
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Table 6. Comparison of mean accuracies (Acc (%)) and standard deviations (Std (%)) of DE and eye movement features with different
classifiers in ICSI setting. The best results are in bold.

KNN SVM LR DNN

EEG Eye EEG Eye EEG Eye EEG Eye

Chinese
Acc 54.09 52.10 72.63 69.94 68.36 60.00 82.81 80.26
Std 8.71 14.90 10.50 16.15 11.71 16.59 7.52 10.15

German
Acc 40.94 56.11 55.64 77.91 50.39 64.30 65.87 84.28
Std 7.42 12.94 12.17 10.69 10.88 12.96 10.05 6.74

French
Acc 37.21 49.18 50.10 71.78 47.18 63.71 64.18 79.85
Std 6.76 9.77 10.29 8.33 12.20 10.74 8.56 7.32

Table 7. Comparison of mean accuracies (Acc (%)) and standard
deviations (Std (%)) of different multimodal fusion methods in
ICSI setting. The best results are in bold.

Concat MAX Fuzzy BDAE DCCA-AM

Chinese
Acc 83.00 78.43 80.92 83.89 84.04
Std 8.69 10.95 8.32 8.79 7.35

German
Acc 77.30 66.45 74.26 81.90 82.07
Std 10.43 12.54 8.45 8.08 7.81

French
Acc 71.89 67.06 73.04 71.27 79.57
Std 7.50 10.64 9.59 8.56 7.80

models between tables 7 and 6 are not as apparent as
those between tables 5 and 3. This might be bacause
the subject-independent scheme is more complex
than the subject-dependent scheme, which limits the
improvements of multimodal deep learning models.

5.3. Cross-culture subject independent (CCSI)
results
In the ICSD and ICSI settings, we examined emotion
recognition performance trained and testedwith both
the same and different subjects from the same culture.
In the CCSI setting, we evaluated emotion recogni-
tion model performance with training samples and
test samples fromdifferent cultures. The cross-culture
scheme is always subject-independent since the sub-
jects in the training set and test set are from different
cultures (i.e. subjects in the training set and test set
will never be the same).

In the CCSI setting, we used samples from one
culture as training data and samples from one of the
other two cultures as test data, and there are 6 situ-
ations in total, namely Chinese as training and Ger-
man as test, Chinese as training and French as test,
German as training and Chinese as test, German as
training and French as test, French as training and
Chinese as test, and French as training and German
as test.

5.3.1. Performance of unimodal models
Classifiers used in this section are KNN, SVM, LR,
andDNN. Table 8 presents the recognition accuracies
and standard deviations, and we performed statist-
ical significant tests on the results of these classifi-
ers. When using Chinese as training data, we find
that DNN achieves the best results for both German

(55.32% for EEGand 62.44% for eyemovements) and
French (which are 57.28% for EEG and 62.38% for
eyemovements).WhenGerman is the training set, we
achieve the best results with DNN for both Chinese
(64.34% for EEG and 56.69% for eye movements)
and French (58.93% for EEG and 67.12% for eye
movements). When French is used as training data,
DNN again has the best performance: for Chinese,
the EEG and eye movement recognition accuracies
are 66.19% and 62.99%, respectively; for German, the
recognition accuracies for EEG and eye movements
are 60.10% and 65.39%, respectively.

We performed a three-way ANOVA test with
experimental settings (six levels), classifiers (four
levels), and modalities (two levels) as factors.
The main effects of classifiers (p< 0.001), settings
(p< 0.001), and modalities (p< 0.001) are all signi-
ficant. However, these main effects were qualified
by significant interaction effects of classifiers × set-
tings (p= 0.002), classifiers×modalities (p= 0.016),
settings × modalities (p< 0.001), and classifiers ×
settings×modalities (p= 0.005).

5.3.2. Performance of multimodal models
Table 9 shows the emotion recognition performance
in terms of accuracies and standard deviations. It is
obvious that the deep-learning-based fusion meth-
ods perform better than traditional fusion strategies
that is consistent with our previous findings that the
deep learning models fuse multimodal signals better
than traditional models. Specifically, when Chinese
is used as training data, French is best predicted by
DCCA-AM with 73.84% recognition accuracy, and
German is also best recognized by DCCA-AM with
73.63%. When we use German as training samples,
the DCCA-AM method outperforms BDAE and tra-
ditional fusion methods: for Chinese test samples,
we obtain 84.28% recognition accuracy, and for the
French test set, the recognition accuracy is 77.06%.
When we use French data as the training set, DCCA-
AM achieves the best test recognition accuracies
for Chinese (82.09%) and German (77.92%) cul-
tures. We then carried out a two-way ANOVA test
with experimental settings (six levels) and classifi-
ers (five levels) as factors. The main effects of set-
tings (p< 0.001) and classifiers (p< 0.001) are signi-
ficant. However, these main effects were qualified by
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Table 8. Performance of mean accuracies (Acc (%)) and standard deviations (Std (%)) of DE and eye movement features in CCSI
setting. The best results are in bold.

KNN SVM LR DNN

Training Test EEG Eye EEG Eye EEG Eye EEG Eye

Chinese
French

Acc 38.44 43.63 46.81 57.60 45.89 50.58 57.28 62.38
Std 7.28 11.00 7.66 9.21 7.90 9.93 7.12 9.35

German
Acc 35.82 38.21 47.88 51.76 45.33 53.81 55.32 62.44
Std 6.20 10.62 8.87 10.40 10.88 12.07 7.32 9.79

German
Chinese

Acc 40.02 37.49 47.39 51.38 41.99 43.48 64.34 56.69
Std 7.43 13.69 10.13 12.73 10.70 12.26 9.85 11.45

French
Acc 38.97 44.91 47.69 65.41 46.70 60.31 58.93 67.12
Std 6.38 13.68 11.08 8.09 11.11 8.82 8.25 7.69

French
Chinese

Acc 34.94 46.35 52.30 51.31 42.80 46.29 66.19 62.99
Std 7.39 15.21 10.96 15.77 12.48 17.04 7.44 15.47

German
Acc 34.70 43.58 48.88 59.74 47.53 57.26 60.10 65.39
Std 6.30 13.34 8.90 7.63 9.47 9.64 7.86 9.37

Table 9. Comparison of mean accuracies (Acc (%)) and standard deviations (Std (%)) of different multimodal fusion methods in CCSI
setting. The best results are in bold.

Training Testing Concat MAX Fuzzy BDAE DCCA-AM

Chinese
French

Acc 63.91 60.19 62.47 71.58 73.84
Std 10.63 9.11 9.47 8.57 8.22

German
Acc 58.22 54.10 59.38 69.50 73.63
Std 12.61 8.65 10.17 6.87 10.75

German
Chinese

Acc 52.57 50.78 55.70 69.15 84.28
Std 13.50 15.12 13.17 8.39 8.19

French
Acc 63.62 61.27 65.28 74.42 77.06
Std 13.28 11.19 9.67 6.29 6.45

French
Chinese

Acc 59.75 57.21 64.14 79.26 82.09
Std 14.22 15.95 14.27 8.59 8.41

German
Acc 62.51 56.80 59.91 75.37 77.92
Std 9.66 11.15 11.19 6.77 8.76

a significant interaction effect of settings× classifiers
(p< 0.001).

From the emotion recognition results in unim-
odal and multimodal situations under the ICSD,
ICSI, and CCSI settings, we draw two conclusions:

• EEG and eyemovements can be applied to emotion
recognition tasks of different cultural backgrounds
since all experimental results are higher than ran-
dom guess results.

• EEG and eye movements have complementary
information leading to a better description of emo-
tion since the results from multimodal fusion set-
tings are higher than the results from unimodal
settings.

5.4. In-group advantage
In-group advantage is a phenomenon in which emo-
tion recognition is more accurate when judging emo-
tional data from one’s own cultural in-group com-
pared to the cultural out-group. In our settings, the
ICSD and ICSI settings can be seen as cultural in-
groups and the CCSI setting is cultural out-groups.
We plot the average accuracies of all 13 classifiers (4
unimodal EEG classifiers, 4 unimodal eye movement

classifiers, and 5 multimodal classifiers) to compare
the average performance in the ICSD, ICSI, and CCSI
settings, and the results are shown in figures 3(a)–(c).
Besides, we also depicted the average performace of
Chinese, German, and French subjects in in-group
and out-group settings in figure 3(d).

It is clear that the average performance of in-
group settings is higher than the average perform-
ance of the out-group settings, which is consist-
ent with the ‘in-group advantage’ phenomenon.
We adopted a two-way ANOVA test with cul-
tures (three levels) and experimental settings (two
levels) as factors. There was a significant main effect
for experimental settings (p< 0.001). Overall, in-
group settings achieved higher emotion recogni-
tion accuracies than out-group settings. Addition-
ally, there was a significant main effect of cultures
(p= 0.049). However, these main effects were qual-
ified by a significant culture × settings interaction
(p= 0.002). The in-group settings brought signific-
ant improvements for Chinese (p< 0.001) and Ger-
man (p< 0.001) subjects; the improvement was not
significant for French people (p= 0.149) though we
observed a higher performance in in-group settings.
Besides, Chinese, German, and French subjects have
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Figure 3. In-group advantage analysis. Subfigures (a)–(c) show average performance of various classifiers in ICSD, ICSI, and
CCSI settings for Chinese, German and French people, respectively. Subfigure (d) shows average emotion recognition accuracies
for Chinese, German, and French people in in-group and out-group settings.

comparable emotion recognition accuracies in out-
group settings (p= 0.723). However, the accuracies
changed significantly for different cultures in in-
group settings (p< 0.001).

For Chinese and German populations, the aver-
age performance of the ICSD setting has the best per-
formance among the three settings, and the average
performance of the CCSI setting is the worst. Intu-
itively, this result is consistent with our experiences:
from ICSD to CCSI, the divergences between train-
ing data and test data become increasingly prominent,
leading to a decrease in average performance.

For French, a different phenomenon from both
Chinese and German cultures is that the ICSI setting
achieves better average performance than the ICSD
setting. This phenomenonmight be caused by a com-
pact distribution of French samples from different
subjects, leading to a bigger training set for the ICSI
settings than the ICSD setting resulting to a better
average recognition performance.

6. Result analysis and discussion

6.1. Summary of findings
Neural patterns for Chinese, German and French
people indicate there are different responses to pos-
itive, negative, and neutral emotions. For Chinese
people, γ and β bands show decreasing activities for
positive, neutral, and negative emotions, while for
German and French individuals, θ and α bands share
increasing activities for positive, neutral, and negative
emotions.

For ICSD and ICSI settings, we show that DCCA-
AM model fuses EEG and eye movement features
effectively and improves recognition accuracies for
individual emotions. In addition, from the dis-
tribution of attentional weights, we observe that
German and French have similar attentional dis-
tribution which is different from that of Chinese
subjects.

For the CCSI setting, our main finding is that the
data from Chinese are a good fit for test data but not
suitable for training data for the other two cultures.
This finding might be helpful in building an affective
model with good cultural generalization.

6.2. Neural patterns analysis
As depicted in figure 4, we calculate the average DE
features of five frequency bands for each emotion cat-
egory and culture to investigate the neural patterns for
different emotions and different cultures.

For Chinese, the γ band has the most apparent
trend: the areas of high energy decrease in the order
of positive, neutral, and negative emotions. Specific-
ally, the positive emotion has the most prominent
high-energy regions, containing temporal lobes and
some locations of the prefrontal lobe; the neutral
emotion has a smaller high-activation area located
in the prefrontal lobe; and the negative emotion has
the smallest high-energy distribution. For the β band,
the high-energy areas are concentrated in the pre-
frontal areas for positive emotions, the prefrontal and
occipital areas for neutral emotions, and the pre-
frontalmidline areas for negative emotions. The θ and
α bands have high energy in nearly all the brain for
all three emotions. For the δ band, negative emotions
have the lowest activation comparedwith positive and
neutral emotions.

German and French have themost obvious trends
appearing in the θ and α bands, where positive emo-
tion has the lowest activation and negative emotion
has the highest activation. Another common charac-
teristic for German and French is that for the β band,
the activation is low for positive and neutral emo-
tions, while the activations have a sudden boost for
negative emotions. Like Chinese, the average energies
for the θ and α bands are higher than those for the
other frequency bands.

From the perspective of cross-cultural emotion
recognition, for positive and neutral emotions, Ger-
man has the lowest activation level across all fre-
quency bands among the three cultures, the activ-
ation level of French follows, and Chinese has the
most potent activation levels. For negative emotion,
Chinese has the lowest energy across five frequency
bands, and French has the highest energy.

6.3. Intraculture subject dependent analysis
We compared the CMs of EEG and eye move-
ment features with the SVM classifier, concatenation
fusion method, and DCCA-AMmethod for Chinese,
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Figure 4. The average neural patterns of the DE features of five frequency bands for different emotions and cultures. Blue colors
indicate low activation/energy levels, and red colors indicate high activation/energy levels.

German, and French individuals. We calculated
12 CMs (three cultures with four CMs for each cul-
ture) in total. We present the CMs as a nested pie plot
in figure 5(a). In figure 5(a), twelve CMs are depicted
as twelve circles, where the outer four circles, middle
four circles, and inner four circles represent Chinese,
German, and French, respectively. For each culture,
the four circles represent EEG features, eyemovement
features, concatenation fusion, and DCCA-AM from
outer to inner, respectively. True test emotion cat-
egories are shown in three fan-shaped sectors, and the
predicted emotions are in different colors.

For Chinese individuals, EEG features have better
performance than eye movement features for posit-
ive, neutral, and negative emotions. The concatena-
tion fusion strategy improves positive emotion recog-
nition performance, achieves similar results to that
of EEG features for neutral emotions, and performs
worse than both EEG features and eye movement fea-
tures for negative emotions. In contrast, DCCA-AM
has the best performance on three individual emo-
tion recognition tasks, indicating that the DCCA-AM
method best fuses multimodal features.

For Germans, eye movements generally perform
better than EEG for individual emotion recognition,
and the concatenation method might cause a per-
formance decrease (for neutral and negative emo-
tions) compared with unimodal situations. However,
similar to the Chinese, the DCCA-AM method out-
performs both EEG and eye movement unimodal
situations.

For the French, EEG features have better perform-
ance than eye movement features for positive and
negative emotions, while eye movement features per-
form better than EEG features for neutral emotion.
In addition, DCCA-AM has the best performance for
the three emotions.

In addition, we find that for all three cultures, pos-
itive and neutral emotions are more likely to be mis-
classified into negative emotions. Negative emotions
are more likely to be misclassified into neutral emo-
tions forChinese andGerman individuals. For French
individuals, negative emotions are inclined to be mis-
classified into positive emotions.

The DCCA-AM method can fuse EEG and eye
movement features automatically with an attention
mechanism. We examine the attentional weight dis-
tributions as shown in Figure 5(c), which can reflect
the importance of different modalities. EEG features
have higher weights than eye movement features for
all three cultures, indicating that the EEG features
contribute more than eyemovement features in emo-
tion recognition tasks. From figures 5(a) and (c), for
individual emotion in Chinese, EEG features always
have a better performance than eye movement fea-
tures consistent with the attentional weights. For Ger-
man individual emotions, we notice that when eye
movement features perform better than EEG features
for neutral and negative emotions, the attentional
weight gaps between EEG and eye movement mod-
alities become narrower than those in positive emo-
tions. For French, trends are similar to German that
when eye movements perform better than EEG in
neutral emotions, the gap becomes narrower than
positive and negative emotions.

6.4. Intraculture subject independent analysis
In the ICSI setting, we also compare the CMs and
attentional weights for different classifiers, emotions,
and cultures, as shown in figures 5(b) and (d),
respectively.

For Chinese, DCCA-AM outperforms unimodal
situations for positive and neutral emotions, while
for negative emotion, DCCA-AM only has a similar

14



J. Neural Eng. 19 (2022) 026012 W Liu et al

Figure 5. Confusion matrices (CMs) and attentional weights in ICSD (a), (c) and ICSI (b), (d) settings. (a), (b) Confusion
matrices are shown in a nested pie plot. Outer four circles represent CMs of Chinese, middle four circles represent CMs of
German, and inner four circles represent French. For each culture, the four circles are CMs of EEG features, eye movement
features, concatenation fusion, and DCCA-AMmethods. True test positive, neutral, and negative labels are shown as three
fan-shaped sectors, and predicted emotions are depicted in different colors. (c), (d) Violin plots for attentional weights of EEG
and eye movement modalities for various cultures and emotions.

performance as eyemovement features. EEG achieves
higher recognition accuracies for positive emotion
and negative emotion than eye movements, where
the gaps between EEG weights and eye movement
weights are large. For neutral emotions, eye move-
ments outperform EEG, corresponding to the trends
to narrow the gap between two modalities.

For German and French individuals, eye move-
ments outperform EEG in positive, neutral, and neg-
ative emotions, leading to different distributions: (1)
The ICSI distributions in figure 5(d) for German and
French individuals are much more compact than the
ICSD distributions in figure 5(c), and there are no

obvious gaps between EEG and eye movement atten-
tional weights. (2) Eyemovements have larger average
weights than EEG for almost all three emotions except
positive emotion in Germany.

6.5. Cross-culture analysis
In the cross-culture setting, we first analyze CMs
and attentional weights as shown in figures 6 and 7,
respectively. Since when one culture is used as test
data, the other two cultures are used as training data
separately, we plot 24 CMs (3 test cultures × 2 train-
ing cultures for each test culture × 4 classifiers) in
figure 6. In addition, the emotion transfer chart in
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Figure 6. CCSI confusion matrices (CMs). Confusion matrices are shown as nested pie plot. Outer four circles represent test CMs
of Chinese, middle four circles represent test CMs of German, and inner four circles represent test French. For each culture
bundle, four circles are CMs of EEG features, eye movement features, concatenation fusion, and DCCA-AMmethod, respectively.
True test positive, neutral, and negative labels are shown as three fan-shaped emotion sectors (separated by solid lines), and
predicted labels are depicted in different colors. Each emotion sector is split into two small sectors (separated by dotted lines, pink
sector and purple sector), which indicate different training cultures for three cultures: In pink sector from outer to inner, German,
French, and German features are used as training and Chinese, German, and French as test correspondingly. In purple sector from
outer to inner, French, Chinese, and Chinese samples are used training data, and Chinese, German, and French samples are used
as test data.

Figure 7. Attentional weight distributions in CCSI setting. Panels (a)–(c) represent situations where Chinese, German, and
French are used as test sets, and the other two cultures are used as training sets, respectively.

figure 8 shows the accuracies when every culture is
used for both training and test.

When Chinese is test data, from figure 6, for dif-
ferent classifiers, it is evident that the DCCA-AM
method has the best performance for three emotions.
For positive emotions, EEG has higher recognition
accuracies than eye movements regardless of training

cultures indicating that EEG is easily transferred from
the training culture to Chinese. For neutral emotions,
eye movements perform better than EEG, which sug-
gests that eye movements play a more important
role in neutral emotion. For negative emotions, when
French is the training culture, EEG and eye move-
ments have comparable performance, while when
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Figure 8. Emotion transferability chart in CCSI setting:
arrow red side means the culture is used as training set,
arrow green side means the culture is used as test set,
and number next to the arrow is the best emotion
recognition accuracy on test set (refer to table 9). This
chart shows results when every culture is used as both
training and test. CN: Chinese; FR: French; DE:
German.

German is the training culture, eye movements out-
perform EEG. From figures 6 and 7(a), it seems that
the attentional weights have a reversed relationship
with the CMs: DCCA-AM assigns higher weights to
modalities that haveworse performance. Taking neut-
ral emotion as an example, we find that eyemovement
features perform better than EEG features in both
German and French training situations; however,
DCCA-AM gives EEG features higher weights, fuses
these two modalities, and achieves improvements. In
addition, the attentional weights calculated by Ger-
man and French training data show similar trends,
namely, EEG plays an increasingly important role in
positive, negative, and neutral emotions. These res-
ultsmight indicate thatGerman and French individu-
als share similar culture-related emotional cognitive
patterns and that the reversal attentional weight rela-
tionship might also indicate that the culture-related
emotional cognitive patterns shared by German
and French individuals are different from Chinese
patterns.

When German and French are used as test data,
from figures 6, 7(b) and (c), we find that (1) when
Chinese are used as training data, the EEG weights
decrease for positive, negative, and neutral emotions
regardless of the cultural background of the test set.
(2) When French is used as training data and Ger-
man is used as test data, and when German is used
as training data and French is used as test data, the
EEG weights become increasingly larger, changing
reversely to when Chinese is used as the training set.
These two observations might again suggest that Ger-
mans and French people share culture-related emo-
tional cognitive patterns within each other and that
these patterns are different from those of Chinese
people. However, we did not observe a consistent
researsal relationship in attentional weight distribu-
tions when German and French are used as test
data.

We then depict an emotion transfer chart as
shown in figure 8. We focus on two situations: (1) a
specific culture is the test data, and (2) a specific cul-
ture is the training data. The first situation reflects
emotional transferability and shows how easily this
culture is transferred from other cultures, and the
second situation can reflect how suitable this cul-
ture is as the training set for cultural generalization,
where researchers might build emotion models with
a specific culture and generalize the model to other
cultures.

For the first situation, when French is used as test
data, the test emotion recognition accuracies when
Chinese and German individuals as training data
are 73.84% and 77.06%, respectively. When Chinese
is used as test data, the test emotion recognition
accuracies when German and French as training data
are 84.28% and 82.09%, respectively. When Ger-
man is used as test data, the test emotion recogni-
tion accuracies when Chinese and French as train-
ing data are 69.50% and 77.92%, respectively. It is
obvious that (1) when used as test data, Chinese
has higher test recognition accuracies (above 82%)
than German and French (below 78%), and (2) when
used as test data, Chinese has the smallest perform-
ance gap (2.19% between 84.28% and 82.09%), and
German and French have larger performance gaps
(4.29% between 77.92% and 73.63% for German,
and 3.22% between 77.06% and 73.84% for French).
These experimental results indicate that (1) German,
not Chinese, transfers more easily to French and that
French, not Chinese, transfersmore easily toGerman,
indicating that there might be shared culture-related
emotional patterns between French and German; and
(2) German and French have similar emotion trans-
feraility on the Chinese test set.

For the second situation, it is worth noting that
accuracies in the second situation cannot be used to
evaluate emotion transferability since the test data
are different. However, this situation might provide
some insights for cultural generalization. When Ger-
man and French are used as training data, the test
accuracies are all above 77%, and the performance
gaps between the test sets are 7.22% and 4.19%,
respectively. When Chinese is used as training data,
the test accuracies for German and French are below
74%, and the performance gap between the Ger-
man and French test sets is 0.21%. As the training
set, Chinese has the smallest test recognition accur-
acy gap, but at the same time, the test accuracies are
also the lowest compared with when German and
French are used as the training set. This suggests that
Chinese might not be a good training set for cultural
generalization.

When the data from Chinese are used as test data
and the data fromGermanor French are used as train-
ing data, we call information used to predict Chinese
emotion states is transferred from the models built
with the data fromGerman or French.When the data
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from Chinese are used as training data and the data
from German or French are used as test data, we
call the models trained with the data from Chinese
transfer Chinese emotional information to German
or French. We can obtain the following two find-
ings: (a)Chinese ismuchmore easily transferred from
other cultures than transferred to other cultures. In
other words, the data from Chinese are a good fit
for test data but not suitable for training data for the
other two cultures. And (2) German and French seem
to be more helpful in building emotion recognition
models with better cultural generalization. However,
more research is needed.

7. Conclusions and future work

In this paper, we have systematically evaluated the
relationship between cultures and emotions with
EEG and eye movements from an affective com-
puting perspective. We believe that our findings
could deepen the understanding of cultural influ-
ences on emotions, affective brain-computer inter-
face, and emotion recognition models with good cul-
tural generalization. First, we have collected EEG and
eye movement data for native Chinese, German, and
French individuals, and we have examined five EEG
features. We have found that DE features performed
better than other features. Second, we have evalu-
ated unimodal and multimodal emotion recognition
models in the ICSD, ICSI, and CCSI settings, and
we have found that an in-group advantage exists in
EEG-based emotion recognition according to average
emotion recognition accuracies in in-group and out-
group settings. Third, we have analyzed neural pat-
terns by visualizing DE features, and we have found
that the γ andβ bands exhibit decreasing activities for
positive, neutral, and negative emotions for Chinese,
while for German and French, the θ and α bands
exhibit increasing activities for positive, neutral, and
negative emotions. Fourth, with CMs and attentional
weights, we have analyzed intra- and intercultural
influences on emotion recognition andwe have found
that French and German individuals might share
culture-related emotional patterns that are different
from those of Chinese individuals. Fifth, by analyz-
ing cross-cultural emotion recognition accuracies, we
have found that the data from Chinese are a good fit
for test data but not suitable for training data for the
other two cultures. This can help us build an emotion
recognition system with good cultural generalization
performance.

The field of cultural influences on emotions
includes many topics, and we merely discussed some
typical topics in this paper. In the future, we will
work on this topic from the following aspects: (1)
The amount of data from these cultures is not large
enough, and the number of subjects is not the same
for each culture. We will recruit more subjects with
more cultural backgrounds to improve the dataset

and build a culture-balance dataset. (2) For the ICSI
and CCSI settings, we will use transfer learning
methods to build subject-independentmodels, which
might achieve better recognition accuracies by redu-
cing subject differences.
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