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SEED-VII: A Multimodal Dataset of Six Basic
Emotions With Continuous Labels

for Emotion Recognition
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Abstract—Recognizing emotions from physiological signals is a
topic that has garnered widespread interest, and research continues
to develop novel techniques for perceiving emotions. However, the
emergence of deep learning has highlighted the need for com-
prehensive and high-quality emotional datasets that enable the
accurate decoding of human emotions. To systematically explore
human emotions, we develop a multimodal dataset consisting of six
basic (happiness, sadness, fear, disgust, surprise, and anger) emo-
tions and the neutral emotion, named SEED-VII. This multimodal
dataset includes electroencephalography (EEG) and eye movement
signals. The seven emotions in SEED-VII are elicited by 80 different
videos and fully investigated with continuous labels that indicate
the intensity levels of the corresponding emotions. Additionally,
we propose a novel Multimodal Adaptive Emotion Transformer
(MAET), that can flexibly process both unimodal and multimodal
inputs. Adversarial training is utilized in the MAET to mitigate
subject discrepancies, which enhances domain generalization. Our
extensive experiments, encompassing both subject-dependent and
cross-subject conditions, demonstrate the superior performance of
the MAET in terms of handling various inputs. Continuous labels
are used to filter the data with high emotional intensity, and this
strategy is proven to be effective for attaining improved emotion
recognition performance. Furthermore, complementary properties
between the EEG signals and eye movements and stable neural
patterns of the seven emotions are observed.
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I. INTRODUCTION

EMOTION recognition plays a crucial role in developing
emotional artificial intelligence systems [1], [2] and affec-

tive brain-computer interfaces [3], [4], which enable machines
to attain emotional intelligence [5], and allow computers to
identify, understand, and respond to the emotions of human
beings. Moreover, existing studies have revealed the strong
relationship between emotions and mental illnesses. Mood states
such as depression, attention deficit hyperactivity disorder, anx-
iety disorder, and internet addiction can be identified in pa-
tients through their emotional states [6], [7], [8], [9]. Given the
complexity and importance of emotion, a psychophysiological
process triggered by various factors [5], researchers in the fields
of psychology, neuroscience, and computer science have been
exploring emotion recognition for years [10], [11]. However, the
challenges of detecting and analyzing human emotions remain
largely unexplored.

In recent years, a variety of physiological and nonphysiolog-
ical signals have been employed for emotion recognition [11].
Nonphysiological signals, such as speech [12], [13], [14], facial
expressions [15], [16], [17], and body movements [18], [19] have
been utilized by researchers to recognize human emotions. How-
ever, nonphysiological signals can be easily falsified and are thus
untrustworthy, as individuals may conceal their true emotions.
In contrast, physiological signals, such as electroencephalogram
(EEG) [11], [20], [21], electromyogram (EMG) [22], [23],
and electrocardiogram (ECG) [21], [24], [25] signals, provide
more reliable and stable options than nonphysiological signals.
Specifically, intramuscular EMG, involving inserting needles
into the muscle to record electrical activity, is more reliable and
difficult to falsify than surface EMG due to its invasive nature
and the specific muscle responses it captures.

Among all the available physiological signals, EEG signals
have been shown to outperform other signals such as galvanic
skin response (GSR), respiration (RSP), and ECG in emotion
recognition tasks [11], [20], [26]. EEG signals are inherently
correlated with brain activity and have been investigated in
many fields, such as psychology and neuroscience [6], [27]. In
addition, eye movement signals have been proven capable of
acquiring properties that are complementary to those of EEG
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signals in multimodal emotion recognition scenarios [28], [29].
Therefore, we collect EEG signals, as well as eye movement
signals, to create a novel multimodal dataset named SJTU
Emotion EEG Dataset VII (SEED-VII), which includes six
basic emotions (happiness, sadness, fear, disgust, surprise, and
anger) [30] and the neutral emotion.

There are two main types of approaches for characterizing
emotions: the dimensional model and the discrete categorical
model. The most well-known dimensional model is the 2D
spatial Russell model proposed in 1980, where all affective
concepts are located at a point with valence and arousal di-
mensions [31]. The valence dimension represents whether the
emotions are positive or negative, while the arousal dimension
depicts the level of activation or energy associated with an
emotional experience. Many emotion recognition studies have
been conducted based on the Valence-Arousal model, such as
DEAP dataset [32] and MAHNOB-HCI dataset [28]. Unlike the
dimensional approach which portrays emotions continuously,
the discrete categorical model, first proposed by Ekman in the
1970s, classifies emotions into a set of discrete statuses [30].
Ekman’s theory identifies six basic emotions, namely happiness,
sadness, fear, disgust, surprise, and anger, which collectively
form the basis of all emotional states. The discrete model
has also been widely employed in studies such as the SEED
dataset [20] and emotion research conducted using functional
Magnetic Resonance Imaging (fMRI) [33]. Regarding the in-
sufficient and incomplete study for Ekman’s basic emotions in
EEG-based emotion analysis, our SEED-VII dataset is based on
the discrete model and examines the EEG and eye movement
signals associated with seven emotions, including the six basic
emotions and the neutral state.

EEG signals are convenient and noninvasive physiological
data for emotion recognition due to their harmlessness, inex-
pensiveness, and quick acquisition [11]. However, the existing
EEG emotion datasets such as MAHNOB-HCI [28], DEAP [32],
and SEED [20] have limited diversity in terms of their emotion
categories and short recording durations, which restricts their
potential for use in data analysis and improving the performance
of emotion recognition. Furthermore, neuroscience and cogni-
tive science studies have shown that emotions are complex and
dynamic physiological processes that exhibit various intensities
and states over time [10]. Therefore, recording continuous in-
tensity labels is a practical way to study these changes.

To the best of our knowledge, there are limited public EEG
emotion datasets with continuous labels for representing the
intensity levels of elicited emotions [34]. Additionally, mul-
timodal signals have been proven to be effective in emotion
recognition tasks [35], highlighting the need to record other
physiological and nonphysiological signals during experiments.
To address these issues, we develop a novel multimodal dataset
with continuous labels for emotion recognition focusing on six
basic emotions and the neutral emotion. Our dataset features
more than 14,000 seconds of recordings, making it longer than
most of the existing EEG datasets, which typically record less
than 4,000 seconds of data.

To address the challenges of emotion recognition, many meth-
ods have been explored and applied in recent years, among which

deep learning techniques have been certified to outperform
other approaches [11]. In recent decades, deep belief networks
(DBNs) [20], convolutional neural networks (CNNs) [36], graph
neural networks (GNNs) [37], graph convolutional neural net-
works (GCNNs) [38], [39], and Transformer [40], [41] have
been employed for emotion recognition and have achieved good
discrimination accuracy. Utilizing the attention mechanism,
Transformer can calculate the relevance inside a sequential
structure [42]. Moreover, Transformer has a strong ability to
capture intermodal and intramodal interactions and is suitable
for multimodal emotion recognition.

Although emotion recognition can be performed more effi-
ciently with multiple modalities, few methods have been de-
signed specifically for multimodal cases. In this paper, we
propose a novel Multimodal Adaptive Emotion Transformer
(MAET) that possesses specialized modules that enable it to flex-
ibly operate on both unimodal and multimodal inputs. MAET
is first trained with EEG and eye movement features, aiming
to learn how to address multimodal inputs. We subsequently
leverage emotional prompt tuning to enable the MAET to rec-
ognize emotions using a single modality while still maintaining
the ability to process multimodal features. Moreover, subject
discrepancies are obscured by the use of adversarial training to
promote domain generalization in the MAET.

In summary, the main contributions of this paper are as
follows:

1) We introduce a novel multimodal emotion dataset focusing
on six basic emotions (happiness, sadness, fear, disgust,
surprise, and anger) and the neutral emotion, with recorded
EEG and eye movement signals. Additionally, continuous
labels representing the intensity levels of the correspond-
ing seven emotions are collected. The dataset is publicly
available.1

2) We propose a novel Multimodal Adaptive Emotion Trans-
former (MAET), a flexible model that can process both
unimodal and multimodal inputs with specialized mod-
ules. Furthermore, our proposed MAET model alleviates
subject discrepancies by adopting adversarial training to
improve its domain generalization capabilities.

3) We conduct systematic experiments under various condi-
tions, including unimodal and multimodal conditions, as
well with subject-dependent and subject-independent con-
ditions, on the SEED-VII dataset to evaluate the efficiency
of our MAET model compared to that of other classifiers.
Moreover, we investigate not only the neural signatures
and stable patterns but also the statistics of eye movement
signals.

4) We analyze the effectiveness of filtering high-induced
data using continuous labels. The experimental results
indicate that filtering high-induced data can significantly
enhance the emotion discrimination ability of the proposed
approach. Moreover, we conduct a low- and high-induced
classification experiment to explore the possibility of fil-
tering without continuous labels.

1https://bcmi.sjtu.edu.cn/home/seed/seed-vii.html
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TABLE I
A SURVEY OF THE AVAILABLE PUBLIC EMOTION EEG DATASETS USING VIDEO STIMULI MATERIALS

II. RELATED WORK

A. EEG Dataset for Emotion Recognition

Given the extensive attention that the emotion recognition task
using EEG signals has received, an increasing number of meth-
ods for evaluating emotional states have been proposed [11].
Hence, comprehensive and high-quality emotional datasets are
urgently needed for researchers to evaluate the performance of
their methods. To date, there are several datasets for classifying
emotions that include EEG recordings alone or EEG recordings
along with other modalities. In this section, we review several
of the existing public emotion datasets generated from video
stimulus materials with EEG signals. A survey of the main
public datasets used in the literature is presented in Table I.
We investigate the basic information of each dataset, including
the number of sessions, the number of videos, the total time
of these videos, the recorded physiological signals, the number
of channels and recording frequency of the raw EEG signals,
the availability of continuous labels, and the number of emotion
states studied.

By adopting the valence arousal model, the DEAP [32] and
MAHNOB-HCI [28] datasets recorded EEG signals as well
as other physiological signals, such as GSR, ECG, and EMG
signals, for emotion research. The naive Bayes and SVM clas-
sifiers have been used to conduct the research on DEAP and
MAHNOB-HCI, respectively. DEAP revealed that EEG signals
were better at predicting arousal while peripheral physiological
signals were better at predicting valence. Notably, eye gaze data
were proven to be the best single modality for classifying both
arousal and valence based on the MAHNOB-HCI dataset [28],
highlighting the potential effectiveness of eye movement signals
in emotion recognition tasks. To increase the applicability of
affective computing in everyday scenarios, wearable and wire-
less equipment was employed to collect EEG and ECG signals
while subjects watched 18 film clips intended to elicit 9 target
emotions in DREAMER [21]. An SVM classifier with a Radial
Basis Function (RBF) kernel was used to discriminate low and

high valence, arousal, and dominance levels in the DREAMER
dataset. The datasets above are based on the valence-arousal
model so they are consequently inappropriate for conducting
research on particular discrete emotion states. For example, as
one of the most widely used EEG emotion datasets, DEAP uses
music videos as stimuli, which makes it difficult to evoke partic-
ular emotions. Hence, research conducted based on the DEAP
dataset can only roughly classify high/low valence and arousal,
instead of precise emotions such as happiness or sadness.

Unlike the datasets mentioned above, the SEED [20] dataset
utilized a discrete model to observe the EEG and eye movement
states of particular emotions. Fifteen film clips were selected
to evoke positive, neutral, and negative emotions. Based on the
SEED dataset, Zheng and Lu investigated critical bands and
channels for EEG emotion recognition. It was found that using
the EEG signals derived from channels in the lateral temporal
areas with all frequency bands yielded the best classification
accuracy. To acquire high-resolution EEG (HR-EEG) signals,
Becker et al. selected 13 videos that consisted of 7 positive
emotions and 6 negative emotions from FilmStim to obtain
HR-EEG data along with other physiological signals from 27
subjects [44]. MPED [26] includes a wide range of emotions,
such as joy, funniness, anger, fear, disgust, sadness, and neu-
trality. Multiple physiological signals were recorded with 28
emotional videos used to elicit emotions from 23 subjects. Hu
et al. constructed the THU-EP dataset [45] in 2022, collecting
EEG signals from 80 subjects who responded to 28 video clips
consisting of nine emotions, including four positive emotions,
such as joy and amusement, four negative emotions like anger
and disgust. THU-EP dataset was then developed by recruiting
more subjects to 123 in total to form a bigger dataset called
FACED [43]. By using the discrete model, researchers can
investigate precise emotion states and combinations of emo-
tions. However, the existing datasets cannot effectively satisfy
the requirements of comprehensive and high-quality emotional
data for the following reasons. 1) Limited emotion state cate-
gories have been studied; 2) inadequate videos are available for
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inducing each emotion state; and 3) their videos have short total
times. SEED includes happy, sad, and neutral emotions while
HR-EEG4EMO contains only positive and negative emotions.
The THU-EP and MPED datasets involve more than 7 emotions,
but at most 4 videos were chosen for each emotion, ignoring the
diversity of the emotional stimuli for evoking various affctive
states. The average total time of these datasets described above
is only 3334 seconds.

Besides collecting the brain signals using neural image tech-
niques, requiring subjects to rate their own emotional intensity
also assists in evaluating the quality of emotion elicitation and
analyzing affective states. Koide-Majima et al. [46] recruited 166
annotators who did not participated in the main experiments to
obtain the emotion ratings. However, this rating method, while
ensuring relatively high objective assessment of the emotional
stimuli by large amount of annotators, is unable to rating the
affective states of subjects who has been recorded brain signals.
In our experiment, we asked each subject to rate their emotion
intensity after undergoing whole collecting process each ses-
sion, which reflects the accurate and true intensity of different
subjects.

B. EEG-Based Emotion Recognition

As EEG signals have been proven to be the most promising
physiological signals for emotion recognition, many emotion
recognition algorithms based on EEG signals have been pro-
posed over the years [11]. Zheng and Lu employed a deep belief
network to investigate the critical frequency bands and channels
of EEG signals for emotion recognition [20]. By reshaping and
flattening EEG signals to image-like tensors according to their
spatial relationships, Li et al. used a hierarchical convolutional
neural network (HCNN) to learn the spatial pattern of each
emotion [36]. Alhagry et al. proposed an EEG feature extraction
algorithm using long short-term memory (LSTM) and applied
the obtained features for classifying low/high levels of valence
and arousal [47].

To better extract topographical information from EEG sig-
nals, a regularized graph neural network (RGNN), which can
capture both local and global interchannel relations, was used
by Zhong et al. for emotion detection [37]. Song et al. adopted
a dynamic graph convolutional neural network (DGCNN) for
emotion discrimination, which can dynamically learn the in-
trinsic relationships between EEG channels [39]. Jiang et al.
proposed a graph convolutional network with channel attention
(GCNCA) to classify angry and surprised emotions [38].

Recently, Transformer has been used for emotion recognition.
For example, Wang et al. proposed a Transformer-based model
to hierarchically learn discriminative spatial information [40].
Utilizing an attention mechanism on raw EEG signals, Arjun
et al. achieved excellent accuracy rates of 99.4% and 99.1%
when classifying valence and arousal, respectively [48]. Ra-
jpoot et al. improved upon LSTM and CNNs by using an
attention mechanism for subject-independent emotion recog-
nition, and they achieved state-of-the-art performance [49].
These excellent results demonstrate the effectiveness of attention
mechanisms.

C. Multimodal Emotion Recognition

An emotion is an internal subjective experience and is always
accompanied by various complex but imperceptible physio-
logical manifestations in addition to facial expressions, such
as activation in particular cerebral cortex areas [33] and pupil
diameter fluctuations [50]. Hence, the application of multimodal
signals can provide improved discrimination capabilities, and
this approach has been widely used in emotion recognition due
to the potential complementary properties of different modali-
ties [29], [51]. However, how to effectively combine multimodal
signals is still a challenging problem.

Sun et al. used a hierarchical classifier with hybrid fusion to
distinguish emotions [52]. A fuzzy cognitive map and an SVM
were employed by Guo et al. to form a hybrid classifier for
emotion recognition [53]. A two-stream heterogeneous graph
recurrent neural network was developed by Jia et al. to classify
emotions. This approach can fuse spatial-spectral-temporal do-
main features in a unified framework [54]. Excavating and fusing
information from various modalities using deep learning meth-
ods has proven to be efficient. With the invention of attention
mechanisms, an increasing number of deep fusion methods have
been developed based on such mechanisms. Liu et al. proposed
a deep canonical correlation analysis (DCCA) approach with an
attention-based fusion strategy to perform multimodal emotion
recognition [35]. By pre-training Transformers using masked
value prediction, Vazquez et al. fused EEG and ECG signals
to classify emotions [55]. Nonetheless, these techniques are tai-
lored explicitly for multimodal inputs, and their major drawback
is their limited adaptability to unimodal signals. Some existing
VAE-based emotion decoding methods [56] can handle both
single-modal and multi-modal inputs. These models often use a
shared latent space to integrate multiple modalities, extracting
joint representations to improve emotion recognition accuracy.
In contrast, our method mainly focuses on the fusion of different
modalities and introduces modality-specific expert modules to
adaptively learn inter- and intra- modality information.

III. EXPERIMENTAL SETUP

A. Stimuli

The emotion experiments performed in this paper were de-
signed to simultaneously record EEG and eye movement signals
during the elicitation of seven emotions (happiness, sadness,
disgust, fear, surprise, anger, and neutrality). The selection
of stimulus materials is critical because this step directly im-
pacts the effectiveness of emotion elicitation. Previous studies
have employed various types of stimuli to evoke emotions,
including music [57], pictures [58], facial expressions [15], and
videos [28], [32]. Among all the available stimulus materials,
videos have been found to be particularly effective because they
provide both visual and auditory stimuli, which can reliably and
efficiently elicit emotions.

During the preliminary stage, a pool of stimulus materials
comprising video clips was prepared for eliciting six emotions,
excluding surprise. A group of volunteers are requested to
provide several videos (mainly 2 to 3) per emotion based on
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Fig. 1. The experimental design for video watching. Each row on the right represents a session that includes twenty trials. Different colors represent different
emotions that are to be evoked in the videos. The leftmost side is the process of a single trial, which includes four parts: a starting hint, video watching, an ending
hint, and feedback.

their subjective feelings, thus forming the stimulus pool. To
select the most effective video clips for eliciting emotions, we
employed a strategy involving the assessment of all the video
clips by approximately 20 volunteers, who rated each clip on a
scale ranging from 1 to 5. We selected the high-scoring clips
for each emotion. To be consistent with prior SEED series
datasets, we reused the videos in SEED series datasets for happy,
sad, neutral, disgust, and fear emotions as they all underwent
the same selection process mentioned above. For anger, we
collected 44 video clips and finally chose the highest 12 ones.
Considering that surprise could be either positive or negative,
we primarily focus on neutral surprise to avoid confusion with
happy, sad, or fear emotions. Magic videos were chosen for
emotion elicitation, as magic shows have been demonstrated to
be effective at eliciting surprise [38] and people tend to exhibit
a neutral surprise. Consequently, twelve clips were selected
for each emotion (except neutrality), with mean scores of 3 or
higher. The neutral emotion comprised eight clips, resulting in
a total of 80 video clips. Each video clip lasted for two to five
minutes, and the total duration of all the clips was approximately
14,097.86 seconds. We elaborately separated the 80 clips into
four parts, as shown in Fig. 1, and the subjects were required to
complete the entire experiment in four sessions with intervals of
24 hours or more between sessions.

B. Subjects

Initially, 69 people from Shanghai Jiao Tong University
signed up for the experiment through our recruitment ques-
tionnaire. To balance the sex ratio and select the most suitable
subjects, only 24 subjects participated in our experiment. 4
of them dropped out of the experiment for individual reasons
so their data were unavailable. Finally, only twenty subjects
(10 males and 10 females) aged 19 to 26 years (mean: 22.5;
STD: 1.80) participated in the experiments entirely with avail-
able data recorded. All participants were right-handed and had
self-reported normal or corrected-to-normal vision and normal
hearing at Shanghai Jiao Tong University. The participants were
selected through the Eysenck Personality Questionnaire (EPQ),

a widely used questionnaire developed by Eysenck et al. to assess
an individual’s personality traits [59]. Eysenck initially con-
ceptualized personality as several biologically based indepen-
dent temperament dimensions: E (extraversion/introversion),
N (neuroticism/stability), P (psychoticism/socialization), and
L (lie/social desirability). Previous research has demonstrated
that individuals with extroverted characteristics perform better
in terms of perceiving emotions during experiments than those
without such characteristics [20], and people with high extraver-
sion possess more empathy [60], [61]. Therefore, we ranked the
volunteers according to their E values and selected those with
high E values for the experiments. This approach was adopted to
ensure that the participants possessed the desired characteristics
necessary for accurately performing emotion recognition.

C. Protocol

To ensure the quality of the acquired data, the experiments
were conducted in a controlled laboratory environment to mini-
mize noise and other environmental disturbances. Additionally,
the experiments were scheduled during the morning or early af-
ternoon to avoid any confounding effects of fatigue. EEG and eye
movement signals were concurrently collected by a 62-channel
active AgCl electrode cap with an international 10-20 system and
a Tobii Pro Fusion eye tracker, respectively. The EEG signals
were acquired using the ESI NeuroScan System at a sampling
rate of 1000 Hz, while the eye movement signals were sampled
at 250 Hz.

All of the subjects underwent four experimental sessions. The
procedure of the experiment is illustrated in Fig. 1. Twenty trials
were included in each session; each trial consisted of two parts,
where the first part involved watching videos and the second
part involved self-assessment. Subjects scored their emotional
intensity levels from 1 to 10 points. The self-assessment part was
not time-limited and typically took approximately 10 seconds to
complete.

For each session, only five out of seven emotions were elicited,
which reduced the impact of subjects switching into too many
emotional states. Prior to and following the presentation of each
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Fig. 2. The continuous labels annotated by the subjects.

video clip, a 3-second countdown was provided to alert partici-
pants to the imminent start or end of the video. The sequence of
video clips presented in Fig. 1 was carefully arranged to avoid
sudden emotional valence shifts, as human emotions tend to
transform gradually.

Eighty video clips acquired from four sessions in total were
divided into four folds. Each fold contained five clips from each
session, and all the emotional videos were equal in number. At
the conclusion of each session, the participants were instructed
to review all twenty video clips, recall the emotional responses
they experienced during the session and assign continuous labels
to the entire session via a mouse wheel. The subjects were free
to choose to review in real-time or speeded time. An example
of continuous labels is presented in Fig. 2. The continuous
labels ranged between 0% and 100%, where larger values cor-
responded to stronger elicited emotions.

D. Ethics Statement

This study was approved by the Scientific & Technical Ethics
Committee of Shanghai Jiao Tong University. All subjects were
informed of the experimental process before the first session and
signed informed consent forms.

IV. METHOD

A. Multimodal Adaptive Emotion Transformer

The overall architecture of the Multimodal Adaptive Emotion
Transformer is illustrated in Fig. 3. The training procedure has
two phases. The model is first trained using both EEG and eye
movement features to endow it with the ability to process multi-
modal inputs. Afterward, the backbone of the MAET is frozen,
and emotional prompt tuning is introduced to tune only the
emotional prompts and the classifier of a single modality. Once
the MAET is trained, it can take either EEG or eye movement
signals or both EEG and eye movement signals as its inputs.
Given an input feature x ∈ Rd, where d is the dimensionality of
the feature,x is first passed to a multi-view embedding module to
map the single feature to multiple tokens from different views.
Then, the results are fed into an adaptive Transformer and a
mixture Transformer, and the emotions are finally predicted by
the classifiers.

1) Multi-View Embedding Module: The multi-view embed-
ding module takes the input feature and transforms it into
multiple embeddings, with the aim of encouraging the model to
concentrate on different views of the feature. The input feature

x is first transformed to v embeddings by v parallel linear layers

ei = Lineari(x), i = 1, .., v, (1)

where ei ∈ Rde and de is the dimensionality of the embeddings.
Another linear layer followed by an activation function is

used to gate the embeddings with useful information for emotion
recognition

ê = σ(Linear(x)), (2)

where ê ∈ Rde and σ is the sigmoid function constraining the
output value between 0 and 1. ei and ê are multiplied in an ele-
mentwise manner and then stacked over v embeddings, resulting
in E = (E1, . . ., Ev) ∈ Rv×de .

The final output can be calculated as

E = BN(stack(ê� ei)), i = 1, . . ., v, (3)

where� represents the Hadamard product and BN denotes batch
normalization. Through this approach, an input feature x is
converted into a sequence of tokens from different views, which
can be further processed by subsequent transformer layers.

Notably, the multi-view embedding module is optional for
EEG signals because EEG features are naturally sequences
formed by multiple channels or multiple frequency bands and
can be applied directly by multi-head self-attention. However,
we still adopt this module for the EEG data in this paper since
we observe a performance boost when this module is included.

2) Adaptive Transformer and Mixture Transformer: The
adaptive Transformer and mixture Transformer are flexible
components that are inspired by the mixture-of-experts trans-
former [62]. These two modules are capable of covering arbi-
trary scenarios, such as inputs containing only EEGs, only eye
movements, and both EEGs and eye movements, owing to the
flexibility of multi-head self-attention.

Before passing to the adaptive transformer, the embeddings
E are first prepended by a learnable class token Ecls ∈ Rde

,
the function of which is to aggregate information from the
whole sequence and use it for emotion classification later. To
incorporate the positional and modal information, learnable po-
sitional embedding Epos ∈ R(v+1)×de and modality embedding
Emod ∈ Rde are added to the input embeddings, which can be
formulated as

Ẽ = (Ecls, E1, . . ., Ev) + Epos + Emod, (4)

where Ẽ ∈ R(v+1)×de .
The core components of the adaptive Transformer and mix-

ture Transformer are the same, i.e., multi-head self-attention
(MHSA) [42]. The embeddings Ẽ are transformed to queriesQi,
keys Ki, and values Vi by three linear layers. The self-attention
process can be calculated as

Attention(Qi,Ki, Vi) = softmax

(
QiK

T
i√

de

)
Vi. (5)

We employ h self-attention heads, and each head can be de-
noted by Hi = Attention(Qi,Ki, Vi). The output of multi-head
attention is Concat(H1, H2, . . ., Hh)W , whereW is the weight.

The adaptive Transformer introduces two modality experts
to substitute for the standard feed-forward network (FFN),
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Fig. 3. The architecture of the MAET. The MAET is a general and flexible framework for EEG and eye movement signals that is composed of a multi-view
embedding module, an adaptive Transformer block, a mixture Transformer block, and several classifiers.

i.e., EEG-FFN and EYE-FFN, and adaptively selects an ex-
pert to capture modality-specific information according to the
input modality. For example, if the input is EEG-only (eye
movements-only), we employ the EEG-FFN (EYE-FFN) expert
to encode the features. If the input contains multiple modalities,
the EEG expert and the eye movement expert are used to pro-
cess the respective modality features in parallel. The mixture
Transformer follows the vanilla Transformer, where Mix-FFN
is expected to capture more modality interactions. We stack
La adaptive Transformer blocks and Lm mixture Transformer
blocks.

3) Fusion and Classifiers: Let Hcls ∈ Rde denote the class
token of the mixture Transformer output. We introduce an
attention-based fusion approach to adaptively fuse the features
derived from multiple modalities. We first calculate the attention
weights μeeg and μeye by

μeeg, μeye = softmax(〈Heeg
cls ,W

A〉, 〈Heye
cls ,W

A〉), (6)

where WA ∈ Rde and 〈, 〉 denotes the dot product operation.
Thus, the fused features are extracted by

H = μeegHeeg
cls + μeyeHeye

cls . (7)

Finally, a classifier that consists of a linear layer is applied to
the fused features to obtain the final prediction y. The whole
procedure can be formulated as follows:

ym = Cf (F(xeeg, xeye)), (8)

where F represents the feature extractor of the MAET, i.e., the
components excluding the classifiers, and Cf denotes the fusion
classifier. The objective function is the cross-entropy loss

Lm = −
N∑
i=1

ŷi log y
m
i , (9)

where ŷ is the ground-truth label.
4) Emotional Prompt Tuning: We introduce emotional

prompt tuning, which is inspired by the advent of prompt
tuning [63], [64], to tune the model that has been trained on
multimodal inputs to adapt to a single modality. The idea is quite
straightforward. We prepend a small set of learnable embeddings

Pi ∈ Rp×de , which are referred to as emotional prompts, to the
feature embeddings in each Transformer layer. The emotional
prompt tuning process can be formulated as

[Ẽi+1, _] = TLi([Ẽi, Pi]), (10)

where TLi denotes the ith Transformer layer and Ẽi denotes
the feature embeddings of the ith layer. Ẽi+1 is the output and
the input of the i+ 1th Transformer layer. After all the adaptive
and mixture Transformer layers, we adopt mean pooling over
all the EEG or eye movement embeddings, followed by the use
of classifier Ceeg for EEG signals or Ceye for eye movements.

In this stage, we only tune the emotional prompts together
with the classifier and keep the entire backbone trained on mul-
timodal signals frozen. Thus, the ability to cope with multimodal
inputs is preserved while the model learns to predict emotions
using a single modality.

5) Domain-Adversarial Training for Domain Generaliza-
tion: EEG signals vary considerably across different subjects,
which leads to the degraded generalizability of deep learning
models and makes cross-subject emotion recognition challeng-
ing. To reduce the negative impacts of individual discrepancies,
we exploit the adversarial domain generalization method to
increase the robustness of the model [65]. The core idea is to
encourage the model to learn domain-invariant representations.

Assume that for an input feature x, its corresponding domain
label is d from K domains. We devise a domain classifier Cd
that consists of two linear layers and a GELU [66] function
between them. The domain classifier is trained jointly with the
other components in the MAET to determine which domain the
input belongs to. However, overconfident domain classifiers and
domain label noise can lead to instability during the domain-
adversarial training process. To overcome this challenge, we
adopt environment label smoothing (ELS) [67], which encour-
ages the domain classifier to output soft probabilities.

For a domain labeld ∈ [0, 1]K , we transform it to d̂ as follows:

d̂(i) =

{
γ, for d(i) = 1;
1−γ
K−1 , otherwise,

(11)
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where i ranges from 1 to K and
∑K

i=1 d̂(i) = 1. γ is the tradeoff
that controls the convergence of the algorithm and minimizes the
adversarial divergence. We follow the annealing strategy [67]
that gradually decreases γ during the training process as γ =
1− K−1

K
t
T , where t is the current training step and T is the total

number of steps.
Therefore, the loss of the domain classifier is

Ld = −
N∑
i=1

d̂i log Cd(F(xi)). (12)

To confuse the domain classifier so that the feature extractor can
learn domain-invariant representations, we introduce a gradient
reversal layer (GRL) [65], which can be ignored during forward
propagation and reverses the gradient that passes backward from
Cd to F . Consequently, the total loss for the EEG-based cross-
subject emotion recognition task is

L = Leeg − λLd, (13)

where Leeg is the cross-entropy loss for the EEG classifier and
λ is a scaling factor that gradually changes from 0 to 1. It is
suggested that λ = 2

1+e−10t/T − 1, and this strategy makes the
domain classifier insensitive to noise during the early stages of
the training procedure.

B. Feature Extraction

1) EEG Features: Contaminated by environmental and
physiological artifacts, the raw EEG signals collected during
experiments contain non-negligible noise, which hinders the
precise analysis of brain activity. To mitigate the impact of noise,
we first visually inspect the EEG signals and interpolate any bad
channels using the MNE-Python toolbox [68]. We then apply a
bandpass filter with cutoff frequencies of 0.1 Hz and 70 Hz to
remove low-frequency noise. Additionally, a notch filter with
a cutoff frequency of 50 Hz is applied to prevent powerline
interference. To reduce the computational complexity of our
method, we downsample the raw EEG signals from the original
sampling rate of 1000 Hz to 200 Hz.

For EEG features, differential entropy (DE) has been proven
to be the most effective handcrafted feature for emotion recog-
nition, as it has a balanced ability to discriminate between
EEG patterns with low- and high-frequency energy [69]. We
use a 256-point Short-Time Fourier Transform (STFT) with a
non-overlapping Hanning window of 4 seconds to calculate the
frequency domain features. The DE features are extracted in five
frequency bands (delta: 1–4 Hz, theta: 4–8 Hz, alpha: 8–14 Hz,
beta: 14–31 Hz, and gamma: 31–49 Hz), which are defined as

h(X) = −
∫ +∞

−∞

1√
2πσ2

e−
(x−μ)2

2σ2 log

(
1√
2πσ2

e−
(x−μ)2

2σ2

)
dx

=
1

2
log(2πeσ2), (14)

where the random variable X obeys the Gaussian distribution
N(μ, σ) . DE is equivalent to the logarithmic energy spectrum
for a fixed-length EEG sequence in a specific band. Thus, for

TABLE II
EYE MOVEMENT FEATURES

62-channel EEG signals, a DE feature sample in five frequency
bands has 310 dimensions.

Based on the assumption that emotional states are defined in
a continuous space and that emotional states change gradually
over time, we exploit the linear dynamic system (LDS) approach
to filter out components that are not associated with emotional
states [70].

2) Eye Movement Features: Various eye movement parame-
ters, such as pupil diameters, fixation details, saccade details, and
gaze point details, can be captured by eye gaze trackers. Among
these parameters, pupil diameters have been demonstrated to
play a critical role in emotion recognition [71]. Nonetheless,
pupil diameters are highly sensitive to environmental luminance.
We first employ linear interpolation to replace the pupil diameter
samples that are missing due to eye blinking.

Based on the observation that the responses of subjects to
the same video in a controlled lighting environment have sim-
ilar patterns, principal component analysis (PCA) is used to
eliminate the effect of luminance on the pupil diameters [51].
The original data are subtracted by the light reflex, which is
estimated by the first principal component of the observation
matrix containing the pupil diameter data obtained for the same
video clip from all subjects. After that, the residual part contains
only the emotion-associated pupil responses in addition to noise.

The DE features are subsequently computed for the left and
right pupil diameters using the STFT in four frequency bands
(0–0.2 Hz, 0.2–0.4 Hz, 0.4–0.6 Hz, and 0.6–1 Hz) with a
non-overlapping Hanning window of 4 seconds. In addition to
the DE features, the mean and the standard deviation of the
pupil diameters are also calculated. In addition to the pupil
diameters, twenty-one other features are extracted, as shown
in Table II [29]. Consequently, the total number of features
obtained from the eye movement signals is 33.
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TABLE III
THE ACCURACIES AND F1 SCORES (AVG./STD., %) ACHIEVED BY DIFFERENT METHODS USING EEG OR EYE MOVEMENT SIGNALS

V. EXPERIMENTAL RESULTS

A. Implementation Details

Regarding the hyperparameters of the MAET, the numbers
of adaptive Transformer blocks La and mixture Transformer
blocks Lm are set to 2 and 1, respectively. We empirically set
the number of views v = 5 in the multi-view embedding module.
The number of headsh is 4in the MHSA module. The embedding
dimensionality de is tuned within {32, 64} . The batch size is
64in the subject-dependent experiments and 256in the cross-
subject experiments. We use AdamW [73] as the optimizer,
with its learning rate tuned within {0.00003, 0.0001, 0.0003}.
Moreover, we tune the weight decay within {0.0001, 0.01, 0.1}.
The prompt length p is 1 or 2. Note that domain adversarial train-
ing is employed only under cross-subject conditions. Emotional
prompt tuning is only employed in Section V-B. Otherwise, the
MAET is directly trained using only the EEG features with the
cross-entropy loss function.

B. Unimodal and Multimodal Emotion Recognition

To evaluate the efficacy of EEG and eye movement signals
in terms of identifying the seven target emotions, we construct
a subject-dependent model for each subject. Specifically, we
merge the data acquired from one subject during all four sessions
to train the models and then partition the data into four folds for
carrying out a four-fold cross-validation process, as illustrated
in Fig. 1. The overall performance of our proposed methods
is determined based on the average fourfold cross-validation
results. Notably, the input EEG and eye movement features are
transformed by z score normalization. The experimental results
are shown in Tables III and IV.

1) Classification Performance of EEG Signals: With the ex-
traction of differential entropy from five individual frequency
bands and the total EEG band (delta, theta, alpha, beta, and
gamma), we further investigate the critical bands for the seven
emotions by conducting classification tasks on each band as
well as on the total band. The classification performances of six
existing classifiers, K-nearest neighbors (KNN) [72] (K is set
to 1), a hierarchical convolutional neural network (HCNN) [36],
a regularized graph neural network (RGNN) [37], a Trans-
former [42], and a graph convolutional network with channel

TABLE IV
THE ACCURACIES AND F1 SCORES (AVG./STD., %) PRODUCED BY DIFFERENT

METHOD USING MULTIMODAL SIGNALS

attention (GCNCA) [38] are systematically compared with a
newly developed neural network called the multimodal adaptive
emotion transformer (MAET) in this paper. Note that the Emo-
tionDL algorithm proposed in the RGNN is not implemented in
this paper. All methods are implemented strictly under the same
conditions and are fairly compared with each other. Table III
shows the average accuracies and F1 scores produced by each
method.

Differences between bands with different frequencies: No-
tably, high-frequency bands, namely, the alpha, beta, and gamma
bands, exhibit superior discrimination capabilities in compari-
son to those of the low-frequency bands (the delta and theta
bands) for identifying the seven emotions. Moreover, the band
frequency is positively correlated with performance across the
five bands. Additionally, the gamma band outperforms the other
isolated frequency bands with all classifiers, while the total band
yields the best performance among the single bands in most
cases, suggesting complementary properties among the distinct
frequency bands. Notably, the superior discrimination ability of
the gamma band is a new finding that contrasts with previous
research [20] involving fewer emotions, where the beta band
was found to be the most effective band. This disparity may
arise from the fact that the gamma band has more pronounced
discriminative properties, especially for emotions that have not
been extensively studied before. This discovery suggests that
more emotion-associated information might be contained in the
gamma band or the band with the highest frequency, which
highlights the need for future research to pay more attention
to the gamma band because of the precision, complexity, and
variety of emotions.
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Fig. 4. Confusion matrices produced by the MAET using EEG signals, eye
movements or both. The horizontal axis represents the predicted labels, and the
vertical axis represents the true labels.

Differences between different models: In the task of classi-
fying the seven emotions, deep learning methods with attention
mechanisms are absolutely stronger than traditional models such
as KNN. Utilizing low-frequency bands, GCNCA achieves the
best classification accuracy compared to those of the other mod-
els. In contrast, when using high-frequency bands, the MAET
attains the most accurate discrimination results. Specifically, the
highest prediction accuracy of 58.11% is acquired by the MAET
while utilizing the total band, highlighting the effectiveness of
the MAET.

Fig. 4(a) depicts the confusion matrix produced by the MAET
using only EEG signals. The surprise and fear emotions are more
accurately distinguished by the MAET than the other emotions.
In addition, the happy emotion is prone to be misclassified as
surprise, while the neutral emotion is more likely to be confused
with sadness. Furthermore, compared to the other emotions, the
sad and angry emotions are more likely to be misclassified as
each other during the classification process implemented based
on EEG signals, which indicates the similarity between the
neural patterns of the sad and angry emotions.

2) Classification Performance of Eye Movements: For the
eye movement experiment, the 33-dimensional features ex-
tracted as described in Section IV-B2 are employed for clas-
sification purposes. We compare our proposed MAET with
KNN since the other baseline methods are unable to handle
eye movement features. The results are shown in Table III. No-
tably, our MAET model yields the highest prediction accuracy
(50.31%), which is far greater than the 36.01% achieved by
KNN. Additionally, the highest F1 score of 47.10% is achieved
by our MAET model.

Fig. 4(b) presents the confusion matrix produced by the
MAET when using eye movement signals alone. It is evident
from the table that eye movement signals exhibit remarkable
performance in terms of distinguishing between neutral and
fearful emotions. Nonetheless, isolated eye movement signals
have relatively poor performance with respect to classifying the
happy and disgust emotions, whose accuracies are lower than
40%. As shown in Fig. 4(a) and (b), EEG signals attain better
results in terms of discriminating happiness, surprise, disgust,
and anger, while eye movement signals acquire more accurate
results when classifying neutrality, sadness, and fear. Notably,
some similar eye movement patterns are observed between
the happy and angry emotions because 27.53% of the happy
emotions are recognized as anger.

3) Classification Performance of Multimodal Signals: Ta-
ble IV displays the experimental results obtained by different
models using both EEG signals and eye movements. A sys-
tematic comparison is conducted between KNN, the Bimodal
Deep Autoencoder (BDAE) [74], Emotion Transformer Fusion
(ETF) [41], VigilanceNet [75], and the MAET. For KNN, the
EEG features and eye movement features are directly concate-
nated into 343-dimensional feature vectors. The MAET outper-
forms the other classifiers, with the best prediction accuracy of
71.28% and the best F1 score of 69.16%, which illustrates the
effectiveness of our model. Moreover, ETF and VigilanceNet
reach the second- and third-highest accuracies of 65.30% and
62.93%, respectively, as both of these methods utilize attention
mechanisms, as does our MAET model, demonstrating that an
attention mechanism is a significant component for classifying
emotions using multimodal signals.

The confusion matrix produced by the MAET using multi-
modal signals is shown in Fig. 4(c), which shows the details
of its ability to discriminate among the seven emotions. The
MAET achieves outstanding accuracy in terms of classifying
the surprise, neutral, fear, and angry emotions. Among all seven
emotions, the fear emotion yields the highest discrimination
accuracy of 82.41%. Most emotions can be classified more accu-
rately when multimodal signals are used than when EEG or eye
movement signals are used individually. The accuracy achieved
when discriminating happy emotions using multimodal signals
reaches 59.77% compared to 52.68% when only EEG signals are
utilized, which is an increase of 7%. In addition, the accuracies
achieved when discriminating sadness, fear, and anger increase
by 21.70%, 15.63%, and 14.87%, respectively. These results
demonstrate that jointly utilizing EEG and eye movement signals
can significantly improve the classification performance of the
model, which indicates the complementary properties of EEG
and eye movement signals in terms of recognizing emotions.

C. Cross-Subject EEG-Based Emotion Recognition

One of the essential questions in EEG-based emotion recog-
nition is whether this approach is reliable and robust when
recognizing the emotions of a new subject whose physiological
signals have never been recorded and fed into classifiers. Many
factors, such as gender, age, cultural background and the specific
emotion states elicited by stimulus materials, likely influence
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TABLE V
THE PERFORMANCE ACHIEVED BY DIFFERENT METHODS IN CROSS-SUBJECT

EXPERIMENTS

the classification accuracy differences observed among different
subjects during the experiments. To further investigate the per-
formance of our MAET model when facing the above problems,
we compare our MAET model with other classification methods.
The strategy we adopt for measuring the achieved cross-subject
performance is leave-one-subject-out (LOSO) cross-validation.
For each subject, a model is trained with the data from the
other 19 subjects used as the training set and the particular data
from the target subject used as the test set. Afterward, all 20
test results are consolidated to calculate the average accuracy.
Apart from the default baselines, we consider a contrastive
learning-based approach tailored for learning subject-invariant
EEG representations called CLISA [76].

The results are depicted in Table V. It can be seen from
the table that the deep methods are more reliable and robust
than the traditional methods such as KNN in the cross-subject
experiment. Due to the variability between distinct subjects, the
performances of all methods are worse than those achieved under
subject-dependent conditions, and the performance degradation
is nearly 20%. The lowest standard deviation is achieved by
GCNCA, with accuracy and F1 score values of 3.94% and
3.65%, respectively. Our MAET model achieves the highest
accuracy of 40.90% and an F1 score of 38.85%, demonstrating
the robustness of the MAET for cross-subject emotion recog-
nition. Notably, the MAET without adversarial training (AT)
attains the second-highest accuracy of 40.69%, which implies
that adversarial training is helpful for addressing cross-subject
situations to some extent.

D. Neural Signatures and Stable Patterns

To further explore the particularity of the neural signatures
associated with the seven emotions, we project the DE features to
the scalp to determine stable neural patterns. The DE features are
first transformed by z score normalization for each subject and
then averaged over all subjects. Fig. 5 shows the DE topographic
maps produced for the seven emotions in five distinct frequency
bands.

The results show that the happy emotions in the beta band and
gamma band exhibit greater activation in the lateral temporal
areas than do all other emotions; moreover, the energy in the
prefrontal area is significantly lower for happy individuals than
for all negative emotions (sadness, anger, disgust, and fear). For
the surprise emotion, the most distinguishable feature is that the

energy of surprise is particularly low in all frequency bands,
which illustrates why its prediction accuracy of 73.57% is the
highest among those of all emotions when using EEG signals
alone. The neural pattern of the neutral emotion involves strong
alpha responses in the parietal and occipital areas, along with a
small area with low energy in the vertex of the cerebral cortex.
Existing studies [77], [78] have shown that the EEG alpha band
response is correlated with attention, and less attention results in
a high alpha band response. When presented with neutral videos,
subjects are prone to relaxing and paying less attentional, which
leads to high alpha responses. This finding also demonstrates
that people with surprise emotions had significantly poorer alpha
responses since they definitely concentrated on the magic videos.

For the negative emotions, including sadness, anger, disgust,
and fear, we can summarize the following neural patterns. The
energy contained in the lateral temporal areas is low, while
the prefrontal area obtains high energy in the gamma band for
sadness. Regarding anger, in the gamma band, the DE features
are quite low in the temporal and frontal areas. In the theta,
alpha, and beta bands, the neural patterns exhibit moderate
activation in the occipital areas, and a small area with low
energy is observed in the vertex of the cerebral cortex, which
is the same position as that of the neutral emotion. Notably,
for the disgust emotion, a small area with higher energy than
other areas is observed in most frequency bands except the
gamma band, while the occipital areas exhibits less activation
than the other areas. The most detectable neural pattern of fear
is that the frontal cortex has strong activation in all frequency
bands, especially in low-frequency bands such as the delta and
theta bands. Moreover, the parietal areas of fear exhibit less
activation, while the temporal and occipital areas have relatively
high activation levels in all bands. The findings related to these
emotions are consistent with previous fMRI findings [33].

From the DE topographic maps, we observe that the specific
neural patterns of the seven emotions exist in the high-frequency
beta and gamma bands. However, more obstacles are encoun-
tered when classifying emotions in the low-frequency bands
because some emotions, such as happiness, sadness, anger, and
disgust, exhibit moderate and vague activation levels, which
explains the poor prediction accuracy achieved by using low-
frequency bands.

E. Statistics of Eye Movement Signals

We analyze four typical eye movement features, namely,
the pupil diameter, fixation duration, saccade duration, and
dispersion of X, for each emotion. The distributions of these
features are represented using violin plots, as depicted in Fig. 6.
Compared to other eye movement features, the most distinguish-
able feature among the four is the pupil diameter, while the
fixation duration, saccade duration, and dispersion of X have
relatively low discriminability. Among all the emotions, the
neutral emotion possesses the smallest pupil diameter, which is
in line with the findings of previous studies [79], [80] concluding
that attentional lapses are more likely to occur when the pupil
diameter is small. This result is consistent with the analysis in
Section V-D stating that people in neutral emotional states tend
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Fig. 5. The DE topographic maps produced for seven emotions in five frequency bands. The DE features are first normalized for each subject and then averaged
over all subjects.

Fig. 6. Violin plots of several eye movement statistics. The white points indicate the median values, and the bold black lines indicate the interquartile ranges.

to be less attentional. Conversely, fear exhibits the greatest pupil
diameter, while no significant difference is observed between the
pupil diameters of the happy and angry emotions. Moreover, the
surprise, sad, and disgust emotions have similar pupil diameters.
The fixation duration for the neutral emotion is the longest
among all emotions, whereas people with the happy, angry,
and disgust emotions fixate more momentarily. For the saccade
duration, the happy, neutral, and angry emotions have similar
durations, which are slightly longer than the durations of the
other four emotions. The largest dispersion of X exists for people
with fear, and the neutral emotion has the smallest dispersion of
X. These findings are consistent with those of a previous study
that considered five emotions [50].

F. Analysis of Continuous Labels

The intensity score associated with an emotion is a crucial
indicator of its elicitation level and the quality of the collected
physiological data. Several previous studies [34] have evaluated

emotions through the use of continuous labels, which can sen-
sitively measure affective arousal. In our study, we employed a
continuous intensity level rating scale, wherein participants were
asked to score their f elicitation levels by means of a mouse wheel
while reviewing all video clips at the end of each session. For
each particular video clip, the intensity scores of the 20 subjects
are averaged, and the result is depicted in Fig. 7; the order of
the 80 videos is equivalent to that used in Fig. 1. Due to the
ambiguous intensity score definition for neutrality, we exclude
the neutral emotion from our analysis in this experiment. The
middle lines represent the average scores, the color depths of
which represent the numbers of subjects predicted by the MAET
to be highly induced. Moreover, the colored areas depict the
standard deviations of the intensity scores. To better observe the
details of the continuous labels, the range of the Y -axis is scaled
to a more appropriate size for each video clip.

1) Effectiveness of Filtering High-Induced Data: To further
investigate the relevance of the differences between classifi-
cation performance and intensity, we conduct a comparison
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Fig. 7. Continuous labels annotated by the participants. The middle lines indicate the average scores, and the darker the lines are, the more subjects are predicted
by the MAET to be highly induced. The colored areas represent the scores located within the standard deviations.

among the classification performances achieved by each method
under unfiltered and filtered situations, and low-induced data
are filtered out in the filtered situation. The criterion for judging
whether EEG signals are strongly induced is that the score of
the corresponding video clip must be greater than a threshold of
50%, which indicates the part above the horizontal dashed line
shown in Fig. 7. We adopt a smoothing algorithm called LDS
for improving the classification performance; this approach can
smooth the DE features in a particular video clip, as described
in Section IV-B1. For the purpose of discriminating between the
quality of high-induced and low-induced data, LDS is not ap-
plied in this experiment. The experimental results are displayed
in Table VI. It is evident that rapid accuracy and F1 score declines
occur in the unfiltered case compared to the results in Table IV.
From Table VI, we can see that the classification accuracy and
F1 score increase considerably merely by using the filtered data
for all methods.

TABLE VI
THE ACCURACIES AND F1 SCORES YIELDED BY DIFFERENT METHODS WITH

AND WITHOUT THE FILTERED HIGH-FREQUENCY DATA USING CONTINUOUS

LABELS

Fig. 8 depicts the confusion matrices produced by the MAET
in the unfiltered and filtered situations. By filtering the high-
induced data using continuous labels, the prediction accuracies
achieved for anger, disgust, and fear increase by 7.52%, 8.42%,
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Fig. 8. Confusion matrices produced by the MAET with and without the
filtered high-induced data using continuous labels.

and 4.7%, respectively, which underscores the importance of
performing filtering for discriminating among these three emo-
tions. However, slight classification accuracy decreases are ob-
served for the happy, surprise, and sad emotions. Fig. 7 shows
that for the happy, surprise, and sad emotions, it takes longer
for subjects to be evoked by stimulus materials, which results
in a lack of physiological data after filtering. As deep models
require large amounts of data, the use of inadequate data after
filtering may account for the decrease in the ability of the model
to discriminate among these three emotions. This observation
further demonstrates the effectiveness of filtering for happy,
surprise, and sad emotions. These findings suggest that filtering
high-induced data is important for classifying easily evoked
emotions.

2) Classification of High-/Low-Induced Emotions: The sig-
nificance of filtering high-frequency data using continuous la-
bels has been demonstrated in the previous section, highlighting
the potential of this approach to provide enhanced classifica-
tion performance. Nonetheless, manually acquiring continuous
labels from subjects is time-consuming and prone to error.
Notably, compared to the specific intensity score, we are more
concerned about whether particular data are highly induced.
Therefore, it is not necessary to carry out regression tasks to
predict the specific intensity score of each dataset. The issue is
simplified to a binary classification task of determining whether
a given data point is highly induced. This classification exper-
iment was performed using the MAET by every subject for
six emotions each, except for the neutral emotion. We present
the emotion-specific classification accuracies achieved by the
MAET in Fig. 9, with no significant differences observed among
the six emotions. The mean accuracy for all emotions is 75.33%,
while the mean F1 score is 74.47%. Many factors may affect
the accuracy and precision of the emotion states recalled by
the subjects after the whole session, the distinct neural patterns
between the six emotions, and the variety of emotions exhibited
by different subjects. Nonetheless, the use of deep learning
algorithms to discriminate high-induced or low-induced data
is efficient and inexpensive, which suggests that future work
should pay more attention to constructing better classifiers.

3) Regression of Emotional Intensity: In addition to the bi-
nary classification for emotional intensity, we also perform the

Fig. 9. The accuracies and F1 scores produced for seven emotions in high-
/low-induced emotion classification scenarios.

TABLE VII
THE ROOT MEAN SQUARE ERRORS AND PEARSON’S CORRELATION

COEFFICIENT (AVG./STD.) OF EMOTIONAL INTENSITY REGRESSION

regression task. Mean square error (MSE) loss is employed to
optimize the models. Root mean square errors (RMSE) and
Pearson’s Correlation Coefficient (PCC) are utilized as eval-
uation metrics. Note that we use a linear transform (a linear
layer followed by a ReLU activation) instead of the multi-view
embedding module for EEG inputs in this experiment since
the simple linear transformation achieves a better performance.
Table VII exhibits the regression results of different methods.
The RMSE of different methods are relatively close to each
other (around 0.24), while the best PCC is slightly over 0.3.
These results indicate the feasibility of directly regressing the
emotional intensity for each emotion and it still has room for
improvement in the future.

G. Discussion

Our findings revealed distinct neural patterns associated with
each of the seven emotions in the EEG data. For instance, the
happy emotion showed higher activation levels in the temporal
areas in the beta and gamma bands. Surprisingly, the surprise
emotion produced very low DE features across all bands, sug-
gesting a unique neural signature. The sad and angry emotions
exhibited lower DE features in the gamma band in the temporal
areas compared to other emotions. Additionally, the occipital
area for the disgust emotion had the lowest DE features among
all emotions, and the frontal area for the fear emotion showed
high activation. These findings support the existence of specific
neural signatures for different emotions, which is critical for
developing accurate emotion recognition systems. Among the
four eye movement features analyzed, the pupil diameter proved
to be the most distinctive. Fear elicited the largest pupil diameter,
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whereas the neutral emotion had the smallest. The fixation dura-
tion was longest for the neutral emotion, and shorter for emotions
like happiness, anger, and disgust. The saccade duration was
similar for happiness, neutrality, and anger, but shorter for the
other emotions. The dispersion of X was greatest for fear and
smallest for neutrality, reflecting attentional differences between
emotional states.

The confusion matrices produced by the MAET using EEG
signals alone showed that the surprise and fear emotions were
more accurately distinguished than other emotions. However,
the happy emotion was often misclassified as surprise, and the
neutral emotion tended to be confused with sadness. Further-
more, the sad and angry emotions were frequently misclassified
as each other, indicating a certain level of similarity in their
neural patterns.

We also explored the impact of filtering data according to
continuous labels, which represent the intensity of emotions.
The results indicated that filtering high-intensity data led to a
significant increase in classification accuracy, particularly for
easily evoked emotions. This finding underscores the impor-
tance of focusing on emotionally intense samples for improving
emotion recognition performance.

VI. CONCLUSION

In this study, we developed a novel multimodal emotion
dataset named SEED-VII comprising seven emotions (hap-
piness, sadness, fear, disgust, surprise, anger, and neutrality)
with EEG and eye movement signals. An important feature of
SEED-VII is that it includes continuous labels that indicate
the affective intensity levels that subjects experienced during
watching videos.

We proposed a novel multimodal Transformer model named
the MAET, which is capable of flexibly addressing unimodal and
multimodal inputs. The performances of different existing meth-
ods were systematically evaluated in unimodal and multimodal
cases. Furthermore, we conducted a cross-subject experiment
using LOSO cross-validation to evaluate the performance of
each method.

The experimental results indicated that neural signatures and
stable EEG patterns existed for the seven emotions, validating
the feasibility of cross-subject research. We found that the happy
emotion exhibited greater activation levels in temporal areas in
the beta and gamma bands, the surprise emotion yielded very
low DE features in all bands, the neutral emotion produced
strong alpha responses, the temporal areas of the sad and angry
emotions in the gamma band were lower than those of other
emotions, the occipital area of the disgust emotion was the lowest
among those of all emotions, and the frontal area of the fear
emotion displayed high activation.

Moreover, a comparison between unfiltered and filtered sit-
uations was carried out to explore the effect of filtering data
according to continuous labels. The experiments indicated that a
considerable increase in accuracy was achieved with the filtered
data. We discovered that filtering high-induced data is important
for classifying easily evoked emotions.
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