
INVITED PAPERBlind Deconvolution of Dynamical Systems:A State-Space ApproachLiqing Zhang and Andrzej CichockiLaboratory for Open Information Systems,Brain Science Institute, RIKENWako-shi, Saitama 351-0198, JapanE-mail: fzha/ciag@open.brain.riken.go.jpAbstract In this paper we present a general framework of the state space approach for blinddeconvolution. First, we review the current state of the art of blind deconvolution using state-space models, then give a new insight into blind deconvolution in the state-space framework. Thecost functions for blind deconvolution are discussed and adaptive learning algorithms for updatingexternal parameters are developed by minimizing a certain cost function, which is derived frommutual information of output signals. The information backpropagation approach is developedfor training the internal parameters. In order to compensate for the model bias and reduce thee�ect of noise, we introduce the Kalman �lter to the blind deconvolution setting. A new concept,called hidden innovation, is introduced so as to numerically implement the Kalman �lter. Thus wepropose a new method: the two-stage approach to blind deconvolution. Finally we suggest how toextend the information backpropagation approach to the nonlinear case. Computer simulations aregiven to show the validity and e�ectiveness of the state-space approach.Keywords: independent component analysis, multichannel blind deconvolution, state-space models, unsuper-vised learning algorithms, nonlinear systems, information backpropagation1. IntroductionBlind separation/deconvolution of source sig-nals has been a subject under consideration formore than a decade [1]-[14]. There are sig-ni�cant potential applications of blind separa-tion/deconvolution in various �elds, such as wire-less telecommunication systems, sonar and radarsystems, audio and acoustics, image enhancementand biomedical signal processing (EEG/MEG sig-nals) [15]-[25]. In those applications, several un-known but independent temporal signals propa-gate through a mixing and/or �ltering, naturalor synthetic medium. The blind source separa-tion/deconvolution problem is to recover inde-

pendent sources from sensor outputs without as-suming any a priori knowledge of the original sig-nals besides certain statistic features [6]-[8], [26].Existing statistical blind deconvolution orequalization algorithms can generally be classi-�ed into two categories: the mutual informa-tion minimization/entropy maximization and thecumulant-based algorithms. The Bussgang algo-rithms [16]-[17], [27] and the natural gradient al-gorithm [9], [11], [28]-[31] are two typical exam-ples of the �rst category. The Bussgang tech-niques are iterative equalization schemes that em-ploy stochastic gradient descent procedures tominimize non-convex cost functions dependingon the equalizer output signals. The Bussgang



algorithms are simple and easy to implement.However, they might converge to wrong solu-tions which results in poor performance of theequalizer. The natural gradient approach wasdeveloped by S. Amari to overcome the draw-back of the Bussgang algorithm [1, 28]. It hasbeen proven that the natural gradient algorithmis an e�cient algorithm in blind separation andblind deconvolution [1]. In the Cumulant FittingProcedure (CFP) [32]-[34], the channel identi�ca-tion process directly employs the minimization ofhigher-order cumulant-based nonlinear cost func-tions. The underlying cost functions in CFPare multimodal, as in the case of Bussgang al-gorithms.Although there exist a number of modelsand methods for separating blindly independentsources, such as the infomax, natural gradientapproach and equivariant adaptive algorithms,there still exist several challenges in generalizingmixtures to dynamic and nonlinear systems, aswell as in developing more rigorous and e�ectivealgorithms with general convergence. For exam-ple, in most practical applications the mixturesnot only involve the instantaneous mixing butalso delays or �ltering of primary sources. Theseismic data, the cocktail problem and biomedi-cal data such as EEG signals are typical examplesof such mixtures.The state-space description of systems [35]-[37] is a new generalized model for blind separa-tion and deconvolution. There are several reasonswhy the state-space models are advantageous forblind deconvolution. Although transfer functionmodels are equivalent to the state-space ones inthe linear case, it is di�cult to exploit any com-mon features that may be present in the real dy-namic systems. The main advantage of the statespace description for blind deconvolution is that itnot only gives the internal description of a system,but there are various equivalent types of state-space realizations for a system, such as balancedrealization and observable canonical forms. Inparticular, it is known how to parameterize somespeci�c classes of models which are of interest inapplications. In addition, it is easy to tackle thestability problem of state-space systems using theKalman Filter. Moreover, the state-space modelenables a much more general description thanstandard �nite impulse response (FIR) convolu-

tive �ltering. All of the known �ltering models,such as AR, MA, ARMA, ARMAX and Gamma�lterings, could also be considered as special casesof exible state-space models.The state space formulation of blind sourceseparation/deconvolution was discussed by Salamet al [38]-[40], Zhang et al [41]-[43] and Cichockiet al [44]-[47]. An e�cient learning algorithm wasdeveloped by Zhang and Cichocki [41] to train theoutput matrices by minimizing the mutual infor-mation. In order to compensate for the modelbias and reduce the e�ect of noise, a state estima-tor approach [43] was also proposed by using theKalman �lter. Cichocki et al extended the statespace approach to nonlinear system [44], and ane�ective two-stage learning algorithm was pre-sented [45] for training the parameters in demix-ing models.In this paper we present a general frameworkof state space approach for multichannel blind de-convolution of both linear and nonlinear systems.First we give a general formulation of blind de-convolution in the state space model. We discusssome theoretical problems, such as recoverability,and cost function for blind deconvolution in thestate space framework. Then we present two ap-proaches, the information backpropagation andthe two-stage approaches. The two approachesare developed for di�erent purposes. The infor-mation backpropagation algorithm is suitable forthe blind deconvolution of minimum phase sys-tems. However, in the non-minimum phase sys-tems, it is not easy to accomplish the blind de-convolution in one step, since the delays in dif-ferent recovered channels of the demixing modelsare unknown [48].In this paper, we divide the parameters indemixing models into two types: The internalparameters and external parameters. They aretrained in di�erent ways. The internal parame-ters are independent of the individual signal sep-aration problems; they are usually trained in ano�-line manner, according to a set of signal sepa-ration problems. In contrast, the external param-eters are trained individually for each separationproblem.



2. General FormulationAssume that unknown source signals s(t) =(s1(t); � � � ; sn(t))T are stationary zero-mean i.i.dprocesses and mutually statistically independent.Suppose that the unknown source signals s(k) aremixed by a stable nonlinear dynamic systemx(k + 1) = F(x(k); s(k); �P (k)) (1)u(k) = G(x(k); s(k)) + �(k) (2)where F andG are two unknown nonlinear map-pings, x(k) 2 RN is the state vector of thesystem, and u(k) 2 Rn is the vector of sensorsignals, which are available to signal processing.�P (k) and �(k) are the process noises and sensornoises of the mixing system, respectively. In thispaper, we present another dynamic system as ademixing modelx(k + 1) = FN (x(k);u(k);�) (3)y(k) = G(x(k);u(k);�) (4)where u(k) 2 Rn is the vector of sensor signals,x(k) 2 RM is the state vector of the system,y(k) 2 Rn is designated to recover source sig-nals in certain sense, FN is a nonlinear mapping,described by a general nonlinear capability neu-ral network, � is the set of parameters ( synapticweights ) of the neural network, G is a nonlinearmapping with non-singularity of derivative @G@u ,and � is the weights of G. The dimension Mof the state vector is the order of the demixingsystem.Since the mixing system is blind, we neitherknow the nonlinear mappings F and G, nor thedimension N of the state vector x(k). We needto estimate the order and approximate nonlin-ear mappings of the demixing system. In theblind deconvolution, the dimension M is di�cultto determine and is usually overesitimated, i.e.M > N . The overestimation of the order Mmay produce delays in output signals, but thisis acceptable in blind deconvolution. There are anumber of neural networks such as Radial BasedFunction, Support Vector Machine and multilayerperceptron, which can be used as demixing mod-els. In this paper, we employ the Support Vec-tor Machine to estimate the nonlinear mappingFN (x(k);u(k);�) in the demixing model.If both of the mappings, FN andG are linear,the nonlinear state space model will reduce to the

standard multichannel blind deconvolution. Inthis paper, we �rst discuss the linear case, thenextend the algorithms to the nonlinear blind de-convolution. For simplicity, we will discuss thenonlinear models of the following form,x(k + 1) = FN (x(k);u(k);�) (5)y(k) = Cx(k) +Du(k) (6)In this demixing model, the output equation isassumed to be linear. The restriction is reason-able since in many practical problems, the mea-surement is a linear combination of certain vari-ables. The simpli�cation of the demixing modelis simply for clarity of presentation and for easierderivation of learning algorithms. One can extendthe results to the general case.2.1 Internal RepresentationThe state space description [35]-[37] allows usto divide the variables into two types: the internalstate variable x(k), which produces the dynamicsof the system, and the external variables u(k) andy(k), which represent the input and output of thesystem, respectively. The vector x(k) is known asthe state of the dynamic system, which summa-rizes all the information about the past behaviorof the system that is needed to uniquely predictits future behavior, except for the purely externalinput u(k). The term state plays a critical rolein mathematical formulation of a dynamical sys-tem. It allows us to realize the internal structureof the system and to de�ne the controllability andobservability of the system as well. In the statespace framework, it becomes much easier to dis-cuss the stability, controllability and observabilityof dynamical systems.We formulate the demixing model in theframework of the state space models for blind de-convolution. The parameters in the state equa-tion of the demixture are referred to as inter-nal representation parameters ( or simply inter-nal parameters), and the parameters in the out-put equation as external ones. Such a distinctionenables us to train the demixing model in twostages: internal representation and output sepa-ration. In the internal representation stage, wewill make the state space as sparse as possiblesuch that the output signals can be represented asa linear combination of the state vector x(k) and



input vector u(k). In this paper, we will employtwo approaches to train the internal parametersand to estimate the state vector by using infor-mation backpropagation and Kalman �ltering.In the state space framework, we suggest thatthe separation of sources should be made in twostages: the �rst one involves training the statespace parameters, such that the system is ofsparse information representation, the second oneinvolves �xing the internal parameters and train-ing the external parameters by blind deconvolu-tion algorithms.2.2 Linear System CaseIn order to illustrate the exibility of the state-space model for blind deconvolution, we elaboratethe mixing model and demixing model within theframework of linear state-space representation.Suppose that the mixing model is described bya linear state discrete-time systemx(k + 1) = Ax(k) +Bs(k) + L�P (k) (7)u(k) = Cx(k) +Ds(k) + �(k) (8)where x 2 RN is the state vector of the system,s(k) 2 Rn is the vector of input signals, u(k) 2Rm is the vector of sensor signals, A 2 RN�N isthe state mixing matrix, B 2 RN�n is an inputmixing matrix, C 2 Rm�N is the output mixingmatrix andD 2 Rm�n is the input-output mixingmatrix. If we ignore the noise terms in the mixingmodel, its transfer function matrix is described byan m� n matrix of the formH(z) = C(zI�A)�1B+D (9)where z�1 is a time delay operator.We formulate the blind separation problem asa task to recover original signals from observa-tions u(k) without prior knowledge on the sourcesignals or state space matrices [A;B;C;D] be-sides certain statistical features of the source sig-nals. Since the mixing model is a linear state-space system, we propose that the demixingmodel here is another linear state-space system,which is described as follows, (see Fig. 1)x(k + 1) = Ax(k) +Bu(k) + L�R(k) (10)y(k) = Cx(k) +Du(k) (11)where � = [A;B;L], the input u(k) of the demix-ing model is simply the output (sensor signals)
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Fig. 1 General linear state-space model for blinddeconvolutionof the mixing model and the �R(k) is the refer-ence model noise. Generally, the set of matri-ces [A;B;C;D;L] are parameters to be deter-mined in a learning process [41]-[47]. For simplic-ity, we assume that the noise terms both in themixing and demixing models are negligibly small.The transfer function of the demixing model isW(z) = C(zI � A)�1B +D. The output y(k)is designed to recover the source signals in thefollowing sensey(k) =W(z)H(z)s(k) = P�(z)s(k) (12)where P is any permutation matrix and �(z) isa diagonal matrix with �iz��i in diagonal entry(i,i), here �i is a nonzero constant and �i is anynonnegative integer. The recoverability of thelinear demixing model and nonlinear demixingmodel will be discussed in the next section.It is easy to see that the linear state spacemodel mixture is an extension of the instanta-neous mixture. When the matricesA;B;C in themixing model and A;B;C in the demixing modelare null matrices, the problem is simpli�ed to thestandard independent component analysis (ICA)problem [6], [8], [9].2.3 Canonical FormsCanonical forms for linear systems are of greatimportance since they provide a unique statespace representation of linear systems [35]-[37].Therefore they play a major role in system iden-ti�cation where a unique parameterization of thesystems in the model set in essential to avoididenti�ability problems. Various types of canoni-cal forms for linear systems have been introducedand studied. Most of these canonical forms for



multi-variable systems are generalizations of theobserver or controller canonical form for single-input single-output systems. The usefulness of acanonical form depends on its properties. Oneof the standard canonical forms, the controllercanonical form, is of particular signi�cance sincethe parameters of the canonical form have a directinterpretation as their coe�cients of the transferfunction. Moreover, this canonical form permitsa straightforward proof of the pole-shift theorem[37]. There are, however drawbacks of the con-troller canonical forms, particularly concerningthe resulting parameterization of linear systems.The set of parameters in the controller form thatlead to a minimal realization is very complicated.Fortunately, in blind deconvolution, the minimalrealization of the demixing system is neither nec-essary nor practical. Another canonical form isthe balanced canonical form, which has a geo-metrically well-behavior parameter space. Oneof the main advantages of the balanced canonicalform is its geometric properties, for example, thestable minimum phase system can be representedin the Lyapunov Balanced Canonical Form.Controller Canonical FormIf the transfer function of a system is given byH(z) = P(z)Q�1(z) (13)where P(z) = PNi=0Piz�i and Q(z) =PNi=0Qiz�i; Q0 = I.The matrices A;B;C and D for the canonicalcontroller form are represented as follows.A = " �Q �QNIn(N�1) O # ; B = " InO # (14)C = (P1 P2 � � � PN ); D = P0 (15)whereQ = (Q1 Q2; � � � ; QN�1) is an n�n(N�1)matrix, O is an n(N � 1)�n null matrix, In andIn(N�1) are the n � n and n(N � 1) � n(N � 1)identity matrices, respectively. In particular, ifthe system is FIR, i.e. H(z) = P(z), both A andB are constant matrices.Lyapunov Balanced Canonical FormThe system W = (A;B;C;D) is calledLyapunov-balanced if the positive de�nite solu-tions Y and Z to the Lyapunov equations,AZ+ ZA� +BB� = 0 (16)A�Y +YA+C�C = 0 (17)

are such thatY = Z = diag(�1; �2; � � � ; �n) := �n (18)with �1 � �2 � � � � � �n > 0. The nonsingu-lar diagonal matrix �s is called the Lyapunov-grammian of the system. The positive numbers�1; �2; � � � ; �n are called the Lyapunov -singularvalues of the system. The canonical form ofa stable minimal system will be Lyapunov bal-anced. This is the main advantage of the bal-anced canonical form. Such a parameterizationfor stable minimum phase systems is of impor-tance in time series analysis, where the innova-tion of state space model is made based an ob-served time series. However, a disadvantage ofthe balanced parameterization is that it does notinclude an atlas for the manifold of systems. Thisleads to a new parameterization: An overlappingparameterization. Refer to [37] for the detailedrealization of balanced canonical forms.3. Cost Functions for BlindDeconvolutionOur objective is to train the demixing modelsuch that the output signals are as spatially mu-tually independent and temporarily i.i.d. as pos-sible. There are a number of cost functions whichful�ll blind deconvolution task. Commonly usedcost functions include maximum entropy, mini-mum mutual information and maximum high or-der cumulants.3.1 Maximum EntropyAssume that p(y;W) and pi(yi;W) are thejoint probability density function of y andmarginal pdf of yi; (i = 1; � � � ; n) respectively.The di�erential entropy of the output of thedemixing model is de�ned byH(y;W) = � Z p(y;W) log p(y;W)dy (19)The entropy H(y;W) is generally not upperbounded. This means that the maximum ofH(y;W) may not exist. In order to overcomethis di�culty, Bell and Sejnowski proposed thatafter using a component nonlinear transformationon y, the entropy will become upper bounded andthe maximum of entropy will always exist. Referto [8] for a detailed discussion.



3.2 Minimum Mutual InformationAnother cost function for blind deconvolutionis the Kullback-Leibler Divergence which de�nesan asymmetrical measure of two probability func-tions [49], [50]. Let py(y) and qy(y) denote twodi�erent probability density functions. We thende�ne the Kullback-Leibler Divergence betweenpy(y) and qy(y) as follows:D(p; q) = Z py(y) log py(y)qy(y)! dy (20)The Kullback-Leibler Divergence can be pre-sented in the context of di�erential geometry asthe Riemannian metric in the space of the distri-butions [49], [50]. The expression (20) can be in-terpreted as a quasi-distance because it is alwaysnon-negative and is equal to zero if and only ifpy(y) = qy(y). Because of this property, we canalso use the Kullback-Leibler Divergence to mea-sure the mutual independence of output signals y.Let pi(yi) be the i-th marginal probability densityfunction of component yi, which is de�ned bypi(yi) = Z py(y)dy(i) ; i = 1; � � � ; n (21)where y(i) is the (n� 1)-dimensional vector afterremoving the i�th element from vector y. If theoutput y is spatially mutually independent, thenpy(y) = nYi=1 pi(yi) (22)The Kullback-Leibler Divergence between py(y)and qy(y) = Qni=1 pyi(yi) is given byD(p; q) = Z py(y) log� py(y)Qni=1 pi(yi)� dy (23)or we rewrite it into the mutual information forml(W) = �H(y;W) + nXi=1H(yi;W) (24)whereH(y;W) = � Z p(y;W) log p(y;W)dyH(yi;W) = � Z pi(yi) log pi(yi)dyiThe divergence l(W) is a nonnegative functional,which measures the mutual independence of the

output signals yi(k). The output signals y aremutually independent if and only if l(W) =0. Therefore, the Kullback-Leibler DivergenceD(p;Qni=1 pi(yi)) can be used as a cost func-tion for blind deconvolution. However, thereare several unknowns in the cost function: thejoint probability density function py(y) and themarginal probability density functions pi(yi).As shown in the Appendix 13.2, we can expressthe entropy H(y) asH(y) = � log jdet(D)j + const (25)The cost function derived from the mutual infor-mation can be simpli�ed asl(y;W) = � log jdet(D)j � nXi=1H(yi;W) (26)In order to implement the statistical on-line learn-ing, we reformulate the cost function asl(y;W) = � log jdet(D)j � nXi=1 log q(yi) (27)where q(yi) is an estimation of the true proba-bility density function of source signals. Thereare a number of methods, such as the Edgeworthseries [51] and Gram-Charlier series [9], to es-timate the probability density function p(yi) ofyi. The Gram-Charlier series is an expansionof a probability density function at the neigh-borhood of the normalized Gaussian distribution�(yi) = 1p2�e�y2i =2,pi(yi) = �(yi)241 + 1Xj=3 cjHj(yi)35 (28)where Hj(yi) are Hermite polynomials, and thecoe�cients cj are de�ned in terms of the cumu-lants of yi. Refer to [9] and [52] for further infor-mation.3.3 High Order CumulantsAlternative function for blind deconvolution isthe high order statistics of the output [53]. Highorder information can be expressed by using cu-mulants. Denote Cr(yi) the cumulant of order rof the random variable yi. Then we can de�ne acost function as followsl(y;W) = nXi=1 jCr(yi)j (29)



Usually such a cost function has a disadvantage inthat we have to perform the whitening procedure�rst, and then maximize the above cost function.4. Invertiability by State Space ModelAssume that the number of sensor signalsequals the number of source signals, i.e. m = n.In the following discussion, we restrict the mixingmodel to the following form,x(k + 1) = F(x(k); s(k)) (30)u(k) = Cx(k) +Ds(k) (31)where the state equation is a nonlinear dynamicsystem, and the output equation is a linear one.From a theoretical point of view, we can easily�nd the inverse of the state space models in thesame form, if the matrix D is invertible. In fact,the inverse system is expressed byx(k + 1) = F(x(k);D�1(y(k) �Cx(k))) (32)s(k) = D�1(u(k) �Cx(k)) (33)This means that if the mixing model is expressedby (30) and (31), we can recover the source signalsusing the inverse system (32) and (33). There isan advantage to the state space model in that wedo not need to inverse any nonlinear functionsexplicitly.4.1 Linear CaseNow we concentrate on the linear system anddiscuss the recoverability and representation ofthe inverse system. From the de�nition, we haveu(k) = H(z)s(k) (34)y(k) = W(z)u(k) (35)The independent sources are recoverable from thedemixing model (10) and (11) if and only ifW(z)H(z) = P�(z) (36)where P and �(z) are de�ned as in (12). Thequestion here is whether matrices [A;B;C;D] ex-ist in the demixing model (10) and (11), such thatits transfer functionW(z) satis�es (36). The an-swer is a�rmative. If the matrix D in the mixingmodel satis�es rank(D) = n, and W0(z) is the

inverse ofH(z), which is de�ned in the Appendix,then any state-space realization [A;B;C;D] ofa new transfer function W(z) = P�(z)W0(z)meets equation (11). Therefore, we have the fol-lowing theorem:Theorem 1 If the matrix D in the mixing modelis of full rank, i.e. rank(D) = n, then there existmatrices [A;B;C;D], such that the output sig-nals y of state-space system (4) and (5) recoversthe independent source signals in the sense of (6).In blind deconvolution problems, we do notknow matrices [A;B;C;D], or the state spacedimension M . Before we train the matrices[A;B;C;D] in the state-space model, we mustestimate the dimension M of the system if oneneeds to obtain a canonical solution. There areseveral criteria for estimating the dimension of asystem in system identi�cation, such as AIC andFPE criteria. The order estimation problem inblind deconvolution is quite di�cult, but inter-esting. It remains an open problem that is notdiscussed in this paper. It should be noted thatif the dimension of state vector in the demixingmodel is overestimated, i.e., it is larger than thatin the mixing model, the separated signals maycontain some auxiliary time-delays, which are ac-ceptable in blind deconvolution.5. Basic Learning AlgorithmsIn this section, we develop learning algorithmsto update the external parameters W = [C;D]in the demixing model. The basic idea is to usethe gradient descent approach to update these pa-rameters. In order to obtain an improved learningperformance, we de�ne a new search direction,which is related to the natural gradient, devel-oped by Amari [49] and Amari and Nagaoko [50].5.1 Gradient Descent AlgorithmFor simplicity we suppose that the matrix Din the demixing model (11) is a nonsingular n�nmatrix. The cost function for learning is derivedfrom mutual information asl(y;W) = � log jdet(D)j � nXi=1 log qi(yi) (37)where det(D) is the determinant of the matrixD.qi(yi) is an approximation of pdf pi(yi). For the



gradient of the cost function l(y;W) with respecttoW, we calculate the total di�erential dl(y;W)of l(y;W) when we take a di�erential dW onW,dl(y;W) = l(y;W + dW) � l(y;W) (38)Following Amari's derivation for the natural gra-dient method [2, 31], we havedl(y;W) = �tr(dDD�1) +'T (y)dy (39)where tr is the trace of a matrix and '(y) is avector of nonlinear activation functions'i(yi) = �d log qi(yi)dyi = �q0i(yi)qi(yi) (40)Taking a di�erential of y in equation (11), wehave the following relationdy = dCx(k) + dDu(k) +Cdx(k) (41)Hence, we obtain the derivatives@l(y;W)@C = '(y)xT (42)@l(y;W)@D = �D�T +'(y)uT (43)Finally the gradient descent learning algorithm isdescribed by�C(k) = ��(k)'(y)xT (44)�D(k) = �(k)(D�T �'(y)uT ) (45)where �(k) is the learning rate. In this algorithm,we must calculate the inverse matrix D�1. In or-der to reduce the computing cost and improve thelearning e�ciency, in [41] we employed the nat-ural gradient technique by multiplying a positivede�nite matrixDTD in the learning algorithm forD. The modi�ed learning rule for D is describedby �D(k) = �(k)(I �'(y)uTDT )D (46)The modi�cation reduces the computing cost, butdoes not signi�cantly improve the learning e�-ciency because the modi�ed search direction isnot the natural gradient one. The algorithm in-cludes an unknown score function '(y). The op-timal one is given by equation (40) with qi(yi) =pi(yi), if we can estimate the true source proba-bility distribution pi(yi) adaptively. Another so-lution is to give a score function according to

the statistics of source signals. Typically if asource signal yi is super-Gaussian, one can choose'i(yi) = tanh(yi). Respectively, if it is sub-Gaussian, one can choose 'i(yi) = y3i [54, 55]. Aquestion will be raised as to whether the learningalgorithm will converge to a true solution if theapproximation score functions are used. The the-ory of the semi-parametric model for blind sepa-ration/deconvolution ([26], [56], [57], [58]) showsthat even through a misspeci�ed pdf is used inlearning, learning algorithms can still convergeto the true solution if certain stability conditionsare satis�ed [54].5.2 Natural Gradient AlgorithmStochastic gradient optimization methods forparameterized systems su�er from slow conver-gence due to the statistical correlation of the pro-cesses signals. While quasi-Newton and relatedmethods can be used to improve convergence,they also su�er from heavy computation and nu-merical instability, as well as local convergenceproblems.The natural gradient search scheme proposedby Amari [1], [49] is an e�cient technique forsolving iterative estimation problems. For a costfunction l(y;W), the natural gradient ~rl(y;W)is the steepest ascent direction of the cost func-tion l(y;W). In this paper we derive the ex-tended natural gradient by introducing a newsearch direction.From linear output equation (6), we haveu(k) = D�1(y(k) �Cx(k)) (47)Substituting (47) into (41), we obtaindy = (dC� dDD�1C)x+ dDD�1y (48)In order to improve the computing e�ciency oflearning algorithms, we introduce a new searchdirection de�ned asdX1 = dC� dDD�1C (49)dX2 = dDD�1 (50)It is easy to obtain the derivatives of the loss func-tion l with respect to matrices X1 and X2 as@l(y;W)@X1 = '(y(k))xT (k) (51)@l(y;W)@X2 = '(y(k))yT (k)� I (52)



Using the standard gradient descent method, wededuce a learning rule for X1 and X2�X1(k) = ��'(y(k))xT (k) (53)�X2(k) = ��('(y(k))yT (k)� I) (54)where � is a learning rate. From (49) and (50),we obtain a novel learning algorithm to updatematrices C and D as�C(k) = � �(I�'(y)yT )C�'(y)xT� (55)�D(k) = � �I�'(y)yT �D(k) (56)In fact, the relation between the natural gradientand the ordinary gradient can be de�ned by~rl = rl " I+CTC CTDDTC DTD # (57)where rl = h@l(y;W)@C @l(y;W)@D i. Therefore, thelearning algorithm can be rewritten equivalentlyin the following form[�C �D] = ��(k) ~rl(y;W): (58)It is easy to see that the preconditioning matrix" I+CTC CTDDTC DTD #is symmetric positive de�nite, and this expressionis the extension of Amari's natural gradient to thestate space model.The natural gradient provides a form by whichthe analysis of stability becomes much easier.The equilibrium points of the learning algorithmsatisfy the following equationsE['(y(k))xT (k)] = 0 (59)E hI�'(y(k))yT (k)i = 0 (60)This means that separated signals y couldachieve a mutual independence as high as possibleif the nonlinear activation function '(y) is suit-ably chosen. From (55) and (56), we see that thenatural gradient learning algorithm [9] is coveredas a special case of the learning algorithm whenthe mixture is simpli�ed to an instantaneous case.On the other hand, if the output signals y of(11) are spatially mutually independent and tem-porarily i.i.d. signals, it is easy to verify that y(k)

satis�es (59) and (60). In fact, from (10) and (11)we have x(k + 1) = k�1Xl=0 ~B ~Aly(k � l) (61)where ~A = A�BD�1C, ~B = BD�1 and we haveassumed that x(0) = 0. Substituting (61) into(59), we deduce that (59) is satis�ed for the i.i.d.property of y(k). In next section we will derivethe stability conditions of the natural gradientalgorithm for the state space model.5.3 Lagrange Multiplier ApproachSalam and Erten [40] proposed another learn-ing algorithm for the state space model by usingthe Lagrange Multiplier. Assume that the demix-ing model is described by (5) and (6). The aug-mented cost function becomesJ(U) = LXk=1�l(k) + �Tk+1(FN (k) � x(k + 1))�(62)whereFN (k) = FN (x(k);u(k);�),U = (W;�)and l(k) = l(y(k);U) is given by (27), whichdepends on the parameters U of the demixingmodel. The Hamiltonian was de�ned asHk = l(k) + �Tk+1FN (k) (63)By using the standard gradient descent approachthey presented a learning algorithm [40]x(k + 1) = @Hk@�k+1 = FN (k) (64)�k = @FN (k)@x(k) T�k+1 + @l(k)@x(k) (65)�� = ��(k)@FN (k)@� T�k+1 (66)�W = ��(k)@l(k)@W (67)Refer to [40] for a detailed derivation. It shouldbe noted that if the demixing model is a linearsystem, the above learning algorithm for W re-duces to the ordinary gradient descent algorithm(44) and (45). However, the learning algorithm(66) is not easy to implement on-line because thesystem (65) is non-causal.



6. Stability of Learning AlgorithmIn this section we discuss the stability of thenatural gradient algorithm (55) and (56). Sincethe algorithm is derived from (53) and (54), weonly need to discuss the stability of (53) and (54).Consider its learning rule�X1(k) = ��'(y(k))xT (k); (68)�X2(k) = ��('(y(k))yT (k)� I) (69)The equilibrium points of the dynamical systemsatisfy E['(y(k))xT (k)] = 0 (70)E hI�'(y(k))yT (k)i = 0 (71)Clearly, the true solution C and D is the solutionof (70) and (71). However, this does not guaran-tee that the C(k) and D(k) converges to the truesolution even locally. This is because if the truesolution is an unstable equilibrium point of (55)and (56), the learning sequence C(k) and D(k)will never converge to it.Assume that y(k) is the recovered signal,which is spatially mutually independent and tem-porarily i.i.d. We will prove that y(k) is a lo-cally stable equilibrium point of the learning al-gorithm (68) and (69) under certain conditionson the source signals.Consider the average version of the learningalgorithm �X1(k) = �F1(X) (72)�X2(k) = �F2(X) (73)whereX = [X1;X2], F1(X) = �E h'(y(k))xT (k)i ;and F2(X) = I � E h'(y(k))yT (k)i. Taking asmall variation at the equilibrium point, we have��X1(k) = �� @F1@X1 �X1 + @F1@X2 �X2� (74)��X2(k) = �� @F2@X1 �X1 + @F2@X2 �X2� (75)This shows that only when all the eigenvalues ofthe matrix " @F1@X1 @F1@X2@F2@X1 @F2@X2 # (76)

have negative real parts, the derived equilibriumpoint is asymptotically stable. In fact, it becomesmuch easier to analyze the stability by using thevariation instead of derivatives in this case. Fromthe de�nition of X1 and X2, we have�y(k) = �X1x(k) + �X2y(k) (77)Consider the following variation�E h'(y(k))xT (k)i = '0(y)�y(k)x(k)T= '0(y) (�X1x(k) + �X2y(k)) x(k)T (78)Using the i.i.d. property of y(k) and (78), wederive the variational equation of X1��X1;ij = ��E 24'0(yi(k) NXp=1 �X1;ipxpxj35= �� 24E['0(yi(k)] NXp=1E[xpxj]�X1;ip35 (79)for i = 1; � � � ; n; j = 1; � � � ; N , or write it in acompact form��X1;i = ��E ['(yi)]E[xxT ]�X1;i (80)for i = 1; � � � ; n, where X1;i is the vector of thei-th row of matrix X1. We can easily derivethe stability conditions for (80). If E ['(yi)] >0 and E[xxT ] is positive de�nite, the matrix��E ['(yi)]E[xxT ] is a negative de�nite matrix;therefore, all the eigenvalues of the matrix arenegative.Following a similar procedure in deriving (80),we derive the variational equation of X2��X2 = ��E hdiag('0(y))�X2yyT i��E h'(y)yT �XT2 i (81)where diag('0(y)) is the diagonal matrix of vec-tor '0(y). For simplicity we omit the discretetime index k in the above equation. The equa-tion (81) can be rewritten into a two-dimensionalsubsystem with a self-closed form. We take thefollowing notation�2i = E[y2i ] (82)�i = E['0i(yi)] (83)mi = E[y2i 'i(yi)] (84)



where '0i = d'idyi . Using the normalization condi-tion (60) and the spatially mutual independenceof y, we simplify (81) to the following componentform��X2;ij = �� ��i�2j �X2;ij + �X2;ji� (85)��X2;ji = �� ��j�2i �X2;ji + �X2;ij� (86)for i 6= j; and i; j = 1; � � � ; n. Similarly, we de-rive the variational equations for the diagonal el-ements ��X2;ii = ��(mi + 1)�X2;ii: (87)Then the stability conditions for (85)-(87) aresummarized asmi + 1 > 0; for i = 1; � � � ; n (88)�i > 0; for i = 1; � � � ; n (89)�i�j�2i �2j > 1; for i; j = 1; � � � ; n (90)which have similar form to the one given byAmari et al [54]. In summary we have the fol-lowing theoremTheorem 2 If the covariance matrix E[xxT ] ispositive de�nite and the conditions (88)-(90) aresatis�ed, the true solution is the asymptoticallystable equilibrium point of the learning algorithm.If the mixing system is linear, the conditionthat the covariance matrixE(xxT ) is positive def-inite can be further simpli�ed. From the mixingmodel we havex(k) = 1Xp=1 ~Ap�1 ~By(k � p) (91)Using expression (91) and the i.i.d. property ofy(k), we haveE hxxT i = 1Xp=1	pdiag(�21 ; � � � ; �2n)	Tp (92)where 	p = ~Ap�1 ~B. If the mixing system is con-trollable, then the matrix[	1 	2 � � � 	N ] (93)is of full rank and the covariance matrix E hxxT iis positive de�nite.

7. Information BackpropagationIn order to develop a learning algorithm formatrices A and B, we use the information back-propagation approach. Combining (39) and (41),we express the gradient of l(y;W) with respectto x(k) as @l(y;W)@x(k) = CT'(y(k)) (94)Therefore, we can calculate the derivative ofl(y;W) with respect to A and B as@l(y;W)@A = NXl=1 @l(y;W)@xl(k) @xl(k)@A (95)@l(y;W)@B = NXl=1 @l(y;W)@xl(k) @xl(k)@B (96)where @xl(k)@A and @xl(k)@B are obtained by the fol-lowing on-line iterations@xl(k + 1)@aij = NXp=1 alp@xp(k)@aij + �lixj(k) (97)@xl(k + 1)@biq = NXp=1 alp@xp(k)@biq + �liuq(k) (98)for l; i; j = 1; � � � ; N and q = 1; � � � ; n, where �li isthe Kronecker delta function. The minimizationof the loss function (37) by the gradient descentmethod deduces a mutual information backprop-agation learning algorithm as follows�aij(k) = ��(k)'(y(k))T NXl=1Cl@xl(k)@aij (99)�biq(k) = ��(k)'(y(k))T NXl=1Cl@xl(k)@biq (100)for i; j = 1; � � � ; N and q = 1; � � � ; n, where �(k) isa learning rate and Cl is the l-th column vectorof matrix C.Since matrices A and B are quite sparse inthe canonical forms, we do not need to updateall elements in the matrices. Here we elaboratethe learning algorithm for the controller canonicalform. In the controller canonical form, the matrixB is a constant matrix, and only the �rst n rowsof matrix A are variable parameters. Denote the



vector of l-row of matrix A by al, l = 1; � � � ; N ,and de�ne @x(k)@al =  @xi(k)@alj !N�N (101)The derivative matrix @x(k)@al can be calculated bythe following iteration@x(k + 1)@al = A@x(k)@al +�l(k) (102)where �l(k) = (�lixj(k))N�N . Substituting theabove representation into (99) and (100), we havethe following learning rule for al,�al = ��(k)'(y(k))TC@x(k)@al (103)The learning algorithm updates the internal pa-rameters of the dynamical system on-line. Thedynamical system (97) and (98) is the variationalsystem of the demixing model with respect to Aand B. The purpose of the system is to estimateon-line the derivatives of x(k) with respect to Aand B. It should be noted that we must choosevery carefully the initial value of the matrices Aand B in numerical implementation. If a suitableinitial value is not chosen, the demixing system orits variational system becomes unstable. The sta-bility is the common problem in dynamical sys-tem identi�cation. One solution is to formulatethe demixing model in the Lyapunov balancedcanonical form [37].8. State Estimator { The Kalman FilterThere is a drawback in trainingA andB usingthe information backpropagation algorithm (99)and (100). It may su�er from instability of thesystems, i.e. the eigenvalues of matrix A may belocated outside of the unit cycle during learning.In order to overcome the problem, we employ theKalman �lter to estimate the state of the system.From output equation (11), it is observed that ifwe can accurately estimate the state vector x(k)of the system, then we can separate mixed signalsusing the learning algorithm (55) and (56).8.1 Kalman FilterThe Kalman �lter is a powerful approach forestimating the state vector in state-space models.

The function of the Kalman �lter is to generateon-line the state estimate of the state x(k). TheKalman �lter dynamics are given as followsx(k+1) = Ax(k)+Bu(k)+Kr(k)+�R(k) (104)where K is the Kalman �lter gain matrix, andr(k) is called the innovation or residual whichmeasures the error between the measured(or ex-pected) output y(k) and the predicted outputCx(k)+Du(k). There are a variety of algorithmswith which to update the Kalman �lter gain ma-trix K as well as the state x(k); refer to [36] and[59] for more details.However, in the blind deconvolution problemthere exists no explicit residual r(k) to estimatestate vector x(k) because the expected outputy(t) here means the source signals, and we can-not measure the source signals. In order to solvethe problem, we present a new concept called hid-den innovation in order to implement the Kalman�lter in the blind deconvolution case. Since up-dating matrices C and D will produce an innova-tion in each learning step, we introduce a hiddeninnovation as followsr(k) = �y(k) = �Cx(k) + �Du(k) (105)where �C = C(k + 1)�C(k) and �D = D(k +1) � D(k). The hidden innovation presents theadjusting direction of the output of the demix-ing system and is used to generate an a poste-riori state estimate. Once we de�ne the hiddeninnovation, we can employ the commonly usedKalman �lter to estimate the state vector x(k),as well as to update the Kalman gain matrix K.The updating rule in this paper is described asfollows:(1) Compute the Kalman gainKk = PkCTk (CkPkCTk +Rk)�1(2) Update estimate with hidden innovationx̂k = xk +Kkr(k)(3) Update the error covarianceP̂k = (I�KkCkk)P(4) evaluate the state vector aheadxk+1 = Akx̂k +Bkuk



(5) evaluate the error covariance aheadPk+1 = AkP̂kATk +Qkwhere Qk and Rk are the covariance matricesof the noise vector �R and output measurementnoise nk, respectively.The theoretic problems such as convergenceand stability remain to be analyzed. Simulationexperiments show that the algorithm, based onthe Kalman �lter, can separate the convolved sig-nals very well.9. Two-stage Separation AlgorithmIn this section we present a novel two-stageseparation algorithm for state-space models. Inthis approach we decompose the separation prob-lem into the following two stages. First we sepa-rate the mixed signals in the following senseW(z)H(z) = PQ(z) (106)where Q(z) = diag(q1(z); � � � ; qn(z)) is a diago-nal matrix with polynomials of z�1 in its diago-nal entity. At this stage the output signals aremutually independent but in single channel con-volution. Therefore, we need only to apply singlechannel equalization methods, such as the natu-ral gradient approach or Bussgang methods, toobtain the temporarily i.i.d. recovered signals.The question here is whether matrices[A;B;C;D] exist in the demixing model (10) and(11), such that its transfer function W(z) satis-�es (106). The answer is a�rmative. Supposethat there is a inverse �lterW0(z) of H(z) in thesense of (10). Since W0(z) is a rational polyno-mial of z�1, we know that there is a state-spacerealization [A0;B0;C0;D0] of W0(z). Then werewrite W0(z) into following formW0(z) = D0 +C0(zI�A0)�1B0= NXi=0Piz�i=q(z�1) (107)We can construct a linear system with transferfunction PNi=0Piz�i as followsA = " OT OnIn(N�1) O # ; B = " InO #(108)C = (P1;P2; � � � ;Pn); D = P0 (109)

where In(N�1) is an n(N � 1)�n(N � 1) identitymatrix, On are an n � n zero matrix, and O isan n(N � 1)� n zero matrix, respectively. Thenwe deduce that W(z) = D + C(zI � A)�1B =W0(z)q(z�1). Thus we haveW(z)H(z) = P�(z)q(z�1) = PQ(z) (110)whereQ(z) is a diagonal matrix with polynomialsof z�1 in its diagonal entities. It is easily seen thatboth A and B are constant matrices. Therefore,we have only to develop a learning algorithm toupdate C and D so as to obtain the separatedsignals in the sense of (106).On the other hand, we know that if the ma-trixD in the mixing model satis�es rank(D) = n,then there exist matrices [A;B;C;D], such thatthe output signal y of state-space system (10)and (11) recovers the independent source signalsin the sense of (106). Therefore, we have the fol-lowing theorem:Theorem 3 If the matrix D in the mixing modelsatis�es rank(D) = n, then for given speci�cmatrices A and B as (108), there exist matri-ces [C;D], such that the transfer matrix W(z) ofthe system (10) and (11) meets equation (106).The two-stage blind deconvolution is realizedin the following way: �rst we give the matricesA and B of the state equation in the form (108),and then employ the natural gradient algorithmto update C and D. We intend to make the out-put of the demixing model as spatially mutuallyindependent as possible. After the �rst stage theoutcome signals are in the following formŷi(k) = q(z)si(k); for i = 1; � � � ; n (111)Then we employ the natural gradient algorithmfor double �nite FIR �lter, to remove the con-volved signals. From computer simulations wesee that the two-stage approach can also recoverthe source signals mixed by a non-minimumphasesystem. 10. Learning Algorithm forNonlinear ModelsIn this section we employ the mutual infor-mation backpropagation approach to train the



neural network in the demixing model. The mu-tual information backpropagation is based on thereal-time recurrent learning. The algorithm ad-justs the synaptic weights of a fully connectedrecurrent network in real time [60]. In this paperwe extend the real-time recurrent learning to thegeneralized blind deconvolution case.Consider the demixing model in the followingform x(k + 1) = FN (x(k);u(k);�) (112)y(k) = Cx(k) +Du(k)) (113)where FN (x(k);u(k);�) is a certain neural net-work and� is the training parameters of the net-work.Following the same derivation for (55) and(56), we havedl(y;W) = �tr(dDD�1) +'T (y)dy (114)Taking a di�erential of y in equation (112), wehave the following relationdy = dCx(k) + dDu(k) +Cdx(k) (115)If we introduce a new search direction as in (49)and (50), we can derive a learning algorithm forC and D, which is the same as (55) and (56).The updating rule for the parameters � is touse the information backpropagation technique.From (114) and (115), we derive the derivative@l(y;W)@� @l(y;W)@� = @l(y;W)@x(k) @x(k)@� (116)where @x(k)@� is recurrently calculated by@x(k + 1)@� = @F(k)@x(k) @x(k)@� + @F(k)@� (117)where F(k) = FN (x(k);u(k);�). The above twoequations are only written formally; the preciserepresentation should be in tensor format. Therecurrent equation (117) estimates the derivativeof state vector x(k) with respect to the synapticweights � of the neural network. Using the gra-dient descent approach, we derive the updatingrule for ��� = ��'0(y(k))TC@x(k)@� (118)

where � is a learning rate.In order to give an explicit form to the in-formation backpropagation algorithm, one mustemploy a neural network with general approx-imation to approximate the nonlinear mappingFN (x(k);u(k);�). There are a number of neu-ral networks suitable for this purpose, such as theSupport Vector Machine, the Radial Based Func-tions and Multilayer Perceptrons. In this paperwe use the Support Vector Machine (SVM) andderive the explicit learning algorithm for trainingthe neural network. A Support Vector Machinefor function approximation and pattern recogni-tion utilizes a kernel function to map the data toa Hilbert space, in which the problem becomeslinear. The SVM for function approximation isof the following formFN (z) = LXp=1VpK(z; zp) + b (119)where z = [xT ;uT ]T ; zp 2 RN+n;b 2 RN ; andVp = (vp;ij) 2 RN�(N+n). The vector elementszp, weights Vp and b are parameters that areto be determined by the learning process, andthe kernel K(z; zp) is usually chosen in advance,which satis�es Mercer's condition. Refer to [61]for detailed information about the SVM and thekernel function. The recurrent equations for theparameters Vp; zp and b are expressed by@x(k + 1)@vp;ij = @FN (k)@xT (k) @x(k)@vp;ij + IijKp (120)@x(k + 1)@zp;i = @FN (k)@xT (k) @x(k)@zp;i +Vp @Kp@zp;i (121)@x(k + 1)@bi = @FN (k)@xT (k) @x(k)@bi + Ii (122)where @FN (k)@xT (k) = PLp=1Vp @K(z;zp)@xT (k) ; Kp =K(z; zp), and Iij is an N�(N+n)-matrix with allzero elements except the (i; j)-th element equal to1. Ii is a N�dimensional vector with all zero ele-ments except the i-element equal to 1. Therefore,the updating rule for Vp; zp and b in the SVM is�vp;ij = ��'0(y(k))TC@x(k)@vp;ij (123)�zp;i = ��'0(y(k))TC@x(k)@zp;i (124)�bi = ��'0(y(k))TC@x(k)@bi (125)



Because of the approximation of nonlinear func-tion by SVM, it unavoidably produces a modelbias, which leads to a model error. In order tocompensate for the model bias, we can also intro-duce the state estimator�Extended Kalman Fil-ter approach to estimate the state vector of thedemixing model. A detailed analysis of the Ex-tended Kalman Filter for blind deconvolution willbe presented in a separate paper.11. Computer SimulationsIn this section we present a number of com-puter simulations to demonstrate the validity ande�ectiveness of the natural gradient algorithm,the information backpropagation algorithm andthe Kalman �lter for blind deconvolution. Com-parisons between several basic separation algo-rithms are also given.To evaluate the performance of the proposedlearning algorithms, we employ the multichannelintersymbol interference [33], denoted by MISI ,as a criteria,MISI = nXi=1 jPjPp jGpij j �maxp;j jGpij jmaxp;j jGpij j+ nXj=1 jPiPp jGpijj �maxp;i jGpij jmaxp;i jGpij j (126)It is easy to show that MISI = 0 if and only ifG(z) is of the form (36). In order to avoid thee�ect of a single numerical trial on evaluating theperformance of algorithms, we use the ensembleaverage approach, that is, in each trial we ob-tain a time sequence of MISI , and then we takeaverage of the ISI performance to evaluate theperformance of algorithms.The learning rate is another important factorin implementing the natural gradient algorithm.The strategy in this paper is to update the learn-ing rate by �(k + 1) = maxf0:9�(k); 10�4g; foreach 200 iterations, the initial value �(0) = 10�2.11.1 The Natural Gradient Algorithm vs. theOrdinary Gradient AlgorithmA large number of computer simulations havebeen performed to compare the learning perfor-mance of the natural gradient algorithm (55) and(56) with the ordinary gradient algorithm (44)

and (45). In this group of simulations, we as-sume that the internal parameters in the demix-ing model are predetermined and represented inthe controller canonical form (14).The mixing model used for computer simula-tions is the multichannel ARMA modelu(k) + NXi=1Aiu(k � i) = NXi=0Bis(k � i) + v(k)(127)where u; s and v 2 R3. The matrices Ai 2 R3�3and Bi 2 R3�3 are randomly chosen such thatthe mixing system is stable and minimum phase.The source signals s are randomly generated i.i.dsignals uniformly distributed in the range (-1,1),and v are the Gaussian noises with zero meanand a covariance matrix 0:1I. The nonlinear ac-tivation function is chosen to be 'i(yi) = y3i forany i.Example 1. We employ an AR model of or-der N = 10 as a mixing system, which can beexactly inverted by a FIR �lter. A large num-ber of simulations show that the natural gradientlearning algorithm can easily and quickly recoversource signals in the sense of W(z)H(z) = P�.Figure 2 illustrates 100 trial ensemble averageMISI performances of the natural gradient learn-ing algorithm and the ordinary gradient learn-ing algorithm. It is observed that the naturalgradient algorithm usually needs less than 3000iterations to obtain satisfactory results, whilethe ordinary gradient algorithm needs more than20000 iterations to obtain satisfactory results,since there is a long plateau in the ordinary gra-dient learning.11.2 Information BackpropagationIn the previous subsection we assumed thatthe internal parameters are designed as �xed ma-trices. However, in many practical applications,we need to train both the internal parametersand external parameters. If we know nothingabout the demixing model, a general solution isto choose an initial value for A and B in the con-troller canonical form, then use the informationbackpropagation to update the internal parame-ters during training.Example 2. We assume that the mixing sys-tem is an ARMA model of order 10, which is sta-ble and minimum phase. The transfer function
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Fig. 3 The coe�cients of H(z) of the mixingsystem for Example 2of the mixing system is plotted in Fig. 3. Thedemixing system is chosen to be a state space sys-tem of order 40, and the initial values forA andBare in the form (108). From the simulation we seethat if we do not update A and B, the outcomeof the recovered signal cannot be perfect. Aftertraining A by using algorithm (103), we can re-cover source signals quite well. Fig. 4 plots theglobal transfer function G(z) =W(z)H(z) up toorder 60.From computer simulations we see that theoverestimation of system order N essentially donot a�ect the outcome of the learning algorithm,but it only increases the computing cost.
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Fig. 4 The coe�cients of G(z) after 3000iterations for Example 211.3 Kalman �lter implementationBecause the approximation of internal param-eters will unavoidably produce a model bias, weemploy the Kalman �lter to compensate for themodel bias and reduce the e�ect of noise. Sev-eral numerical simulations have been performedto demonstrate the performance of the Kalman�lter. Here we give only one illustrative example.Example 3. The transfer function of the mix-ing system is plotted in Fig. 5. It is assumed tobe unknown for the algorithm.Assume that source signals are i.i.d quadra-ture amplitude modulated (QAM). The Gaussiannoise represented by v was zero mean with a co-variance matrix 0:1I. The initial values for ma-trices A and B in the state equation are chosento be ones in canonical controller form and theinitial value for matrix C is set to a zero ma-trix or given randomly in the range (-1,1), andD = I3 2 R3�3.We use the natural gradient algorithm (GD) totrain the output matrices C and D, use the in-formation backpropagation (IB) algorithm (103)to estimate the state matrix A and employ theKalman �lter (KF) to estimate the state vectorx(k) of the system as well. Figures 6 and 7 showthe sensor signal constellation, output constel-lation of demixing system by using the naturalgradient algorithm, information backpropagationand Kalman �lter, respectively.It is worth noting that the output signals con-
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Fig. 5 The coe�cients of H(z) of the mixingsystem for Example 3
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))Fig. 7 Output constellation for Example 3verge to the characteristic QAM constellation, upto an amplitude and phase rotation factors ambi-guities. 12. ConclusionIn this paper we have presented a generalframework of the state space approach for mul-tichannel blind deconvolution/separation. Thestate space model allows us to separate blinddeconvolution in two steps: supervised learningfor internal parameters and unsupervised learn-ing for external parameters. Adaptive learningalgorithms for updating external parameters are

developed by minimizing the suitable cost func-tion, which is derived from mutual information ofoutput signals. The information backpropagationapproach technique is developed for training theinternal parameters as an alternative method. Anstate estimator based on the Kalman �lter is alsopresented in order to amend the model bias andreduce the e�ect of noise. Finally we give sugges-tions for how to extend the information backprop-agation to the nonlinear case. Computer simula-tions are given to demonstrate the validity ande�ectiveness of the state-space approach.13. Appendix13.1 Inverse of Linear State Space ModelSuppose that D satis�es rank(D) = n, andDy is the generalized inverse of D, in the sense ofa Penrose generalized pseudo-inverse. LetD = Dy; A�A = BCB = BD; C = �DCthen the global system can be described asG(z) =W(z)H(z) = I (128)The state transform does not change the transferfunctions, for any nonsingular transform T, if thefollowing relation holdsA = T(A�BDyC)T�1B = TBDyC = �DyCT�1D = DyTherefore, source signals can be recovered by lin-ear state space demixing model (10) and (11).13.2 Derivation of Cost FunctionWe consider n observations fui(k)g and n out-put signals fyi(k)g with length L.U(k) = [uT (1);uT (2); : : : ;uT (L)]TY(k) = [yT (1);yT (2); : : : ;yT (L)]Twhere u(k) = [u1(k); � � � ; un(k)]T and y(k) =[y1(k); � � � ; yn(k)]. The task of blind deconvolu-tion is to train a state space demixing model such



that the joint probability density of Y is factor-ized as follows:p(Y) = nYi=1 LYk=1 pi(yi(k)) (129)where fpi(�)g is the probability density of sourcesignals. In order to measure the mutual indepen-dence of output signals, we employ the Kullback-Leibler divergence as a criterion, which is anasymmetric measure of distance between two dif-ferent probability distributions,KL(W(z)) = 1L Z p(Y) log p(Y)Qni=1QLk=1 qi(yi(k))(130)where we replace pi(�) by certain approximatedensity functions qi(�) for estimated sources, sincewe do not know the true probability distributionspi(�) of original source signals.Provided that initial conditions are set tox(1) = 0, we have the following relationY =WU (131)where W is given byW = 26666664 H0 0 � � � 0 0H1 H0 � � � 0 0... ... . . . ... ...HL�2 HL�3 . . . H0 0HL�1 HL�2 � � � H1 H0
37777775 (132)where Hi for i = 0; 1; � � � are the Markov pa-rameters de�ned by H0 = D; Hi = CAi�1B,i = 0; 1; � � �. According to the property of theprobability density function, we derive the fol-lowing relation between p(U) and p(Y):p(Y) = p(U)jdetHL0 j (133)Using the relation (130), we derive the cost func-tion l(W(z)) as followsl(W(z)) = � log jdetH0j � nXi=1 1L LXk=1 log qi(yi(k))(134)Note that p(U) was not included in (134) becauseit does not depend on the set of parameters fWg.
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