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Abstract

deconvolution. First, we review the current state of the art of blind deconvolution using state-

In this paper we present a general framework of the state space approach for blind

space models, then give a new insight into blind deconvolution in the state-space framework. The
cost functions for blind deconvolution are discussed and adaptive learning algorithms for updating
external parameters are developed by minimizing a certain cost function, which is derived from
mutual information of output signals. The information backpropagation approach is developed
for training the internal parameters. In order to compensate for the model bias and reduce the
effect of noise, we introduce the Kalman filter to the blind deconvolution setting. A new concept,
called hidden innovation, is introduced so as to numerically implement the Kalman filter. Thus we
propose a new method: the two-stage approach to blind deconvolution. Finally we suggest how to
extend the information backpropagation approach to the nonlinear case. Computer simulations are
given to show the validity and effectiveness of the state-space approach.

Keywords: independent component analysis, multichannel blind deconvolution, state-space models, unsuper-

vised learning algorithms, nonlinear systems, information backpropagation

1. Introduction

Blind separation/deconvolution of source sig-
nals has been a subject under consideration for
more than a decade [1]-[14]. There are sig-
nificant potential applications of blind separa-
tion/deconvolution in various fields, such as wire-
less telecommunication systems, sonar and radar
systems, audio and acoustics, image enhancement
and biomedical signal processing (EEG/MEG sig-
nals) [15]-[25]. In those applications, several un-
known but independent temporal signals propa-
gate through a mixing and/or filtering, natural
or synthetic medium. The blind source separa-
tion/deconvolution problem is to recover inde-

pendent sources from sensor outputs without as-
suming any a priori knowledge of the original sig-
nals besides certain statistic features [6]-[8], [26].

Existing statistical blind deconvolution or
equalization algorithms can generally be classi-
fied into two categories: the mutual informa-
tion minimization/entropy maximization and the
cumulant-based algorithms. The Bussgang algo-
rithms [16]-[17], [27] and the natural gradient al-
gorithm [9], [11], [28]-[31] are two typical exam-
ples of the first category. The Bussgang tech-
niques are iterative equalization schemes that em-
ploy stochastic gradient descent procedures to
minimize non-convex cost functions depending
on the equalizer output signals. The Bussgang



algorithms are simple and easy to implement.
However, they might converge to wrong solu-
tions which results in poor performance of the
equalizer. The natural gradient approach was
developed by S. Amari to overcome the draw-
back of the Bussgang algorithm [1, 28]. It has
been proven that the natural gradient algorithm
is an efficient algorithm in blind separation and
blind deconvolution [1]. In the Cumulant Fitting
Procedure (CFP) [32]-[34], the channel identifica-
tion process directly employs the minimization of
higher-order cumulant-based nonlinear cost func-
tions. The underlying cost functions in CFP
are multimodal, as in the case of Bussgang al-
gorithms.

Although there exist a number of models
and methods for separating blindly independent
sources, such as the infomax, natural gradient
approach and equivariant adaptive algorithms,
there still exist several challenges in generalizing
mixtures to dynamic and nonlinear systems, as
well as in developing more rigorous and effective
algorithms with general convergence. For exam-
ple, in most practical applications the mixtures
not only involve the instantaneous mixing but
also delays or filtering of primary sources. The
seismic data, the cocktail problem and biomedi-
cal data such as EEG signals are typical examples
of such mixtures.

The state-space description of systems [35]-
[37] is a new generalized model for blind separa-
tion and deconvolution. There are several reasons
why the state-space models are advantageous for
blind deconvolution. Although transfer function
models are equivalent to the state-space ones in
the linear case, it is difficult to exploit any com-
mon features that may be present in the real dy-
namic systems. The main advantage of the state
space description for blind deconvolution is that it
not only gives the internal description of a system,
but there are various equivalent types of state-
space realizations for a system, such as balanced
realization and observable canonical forms. In
particular, it is known how to parameterize some
specific classes of models which are of interest in
applications. In addition, it is easy to tackle the
stability problem of state-space systems using the
Kalman Filter. Moreover, the state-space model
enables a much more general description than
standard finite impulse response (FIR) convolu-

tive filtering. All of the known filtering models,
such as AR, MA, ARMA, ARMAX and Gamma
filterings, could also be considered as special cases
of flexible state-space models.

The state space formulation of blind source
separation/deconvolution was discussed by Salam
et al [38]-[40], Zhang et al [41]-[43] and Cichocki
et al [44]-[47]. An efficient learning algorithm was
developed by Zhang and Cichocki [41] to train the
output matrices by minimizing the mutual infor-
mation. In order to compensate for the model
bias and reduce the effect of noise, a state estima-
tor approach [43] was also proposed by using the
Kalman filter. Cichocki et al extended the state
space approach to nonlinear system [44], and an
effective two-stage learning algorithm was pre-
sented [45] for training the parameters in demix-
ing models.

In this paper we present a general framework
of state space approach for multichannel blind de-
convolution of both linear and nonlinear systems.
First we give a general formulation of blind de-
convolution in the state space model. We discuss
some theoretical problems, such as recoverability,
and cost function for blind deconvolution in the
state space framework. Then we present two ap-
proaches, the information backpropagation and
the two-stage approaches. The two approaches
are developed for different purposes. The infor-
mation backpropagation algorithm is suitable for
the blind deconvolution of minimum phase sys-
tems. However, in the non-minimum phase sys-
tems, it is not easy to accomplish the blind de-
convolution in one step, since the delays in dif-
ferent recovered channels of the demixing models
are unknown [48].

In this paper, we divide the parameters in
demixing models into two types: The internal
parameters and external parameters. They are
trained in different ways. The internal parame-
ters are independent of the individual signal sep-
aration problems; they are usually trained in an
off-line manner, according to a set of signal sepa-
ration problems. In contrast, the external param-
eters are trained individually for each separation
problem.



2. General Formulation

Assume that unknown source signals s(t) =
(51(t),---,5,(t))T are stationary zero-mean i.i.d
processes and mutually statistically independent.
Suppose that the unknown source signals s(k) are
mixed by a stable nonlinear dynamic system

x(k+1) = F(x(k),s(k).&p(k) (1)
u(k) = G(x(k),s(k)) +0(k) (2)

where F and G are two unknown nonlinear map-
pings, X(k) € RY is the state vector of the
system, and u(k) € R" is the vector of sensor
signals, which are available to signal processing.
&p(k) and 6(k) are the process noises and sensor
noises of the mixing system, respectively. In this
paper, we present another dynamic system as a
demixing model

x(k+1) = Fnx(k),uk),®) (3
y(k) = Gx(k),u(k),®) (4)

where u(k) € R" is the vector of sensor signals,
x(k) € RM is the state vector of the system,
y(k) € R™ is designated to recover source sig-
nals in certain sense, F y is a nonlinear mapping,
described by a general nonlinear capability neu-
ral network, @ is the set of parameters ( synaptic
weights ) of the neural network, G is a nonlinear
mapping with non-singularity of derivative %,
and ® is the weights of G. The dimension M
of the state vector is the order of the demixing
system.

Since the mixing system is blind, we neither
know the nonlinear mappings F and G, nor the
dimension N of the state vector X(k). We need
to estimate the order and approximate nonlin-
ear mappings of the demixing system. In the
blind deconvolution, the dimension M is difficult
to determine and is usually overesitimated, i.e.
M > N. The overestimation of the order M
may produce delays in output signals, but this
is acceptable in blind deconvolution. There are a
number of neural networks such as Radial Based
Function, Support Vector Machine and multilayer
perceptron, which can be used as demixing mod-
els. In this paper, we employ the Support Vec-
tor Machine to estimate the nonlinear mapping
Fn(x(k),u(k),®) in the demixing model.

If both of the mappings, Fx and G are linear,
the nonlinear state space model will reduce to the

standard multichannel blind deconvolution. In
this paper, we first discuss the linear case, then
extend the algorithms to the nonlinear blind de-
convolution. For simplicity, we will discuss the
nonlinear models of the following form,

x(k+1) = Fy(x(k)u(k),®) (5
y(k) = Cx(k)+Du(k) (6)

In this demixing model, the output equation is
assumed to be linear. The restriction is reason-
able since in many practical problems, the mea-
surement is a linear combination of certain vari-
ables. The simplification of the demixing model
is simply for clarity of presentation and for easier
derivation of learning algorithms. One can extend
the results to the general case.

2.1 Internal Representation

The state space description [35]-[37] allows us
to divide the variables into two types: the internal
state variable x(k), which produces the dynamics
of the system, and the external variables u(k) and
y(k), which represent the input and output of the
system, respectively. The vector x(k) is known as
the state of the dynamic system, which summa-
rizes all the information about the past behavior
of the system that is needed to uniquely predict
its future behavior, except for the purely external
input u(k). The term state plays a critical role
in mathematical formulation of a dynamical sys-
tem. It allows us to realize the internal structure
of the system and to define the controllability and
observability of the system as well. In the state
space framework, it becomes much easier to dis-
cuss the stability, controllability and observability
of dynamical systems.

We formulate the demixing model in the
framework of the state space models for blind de-
convolution. The parameters in the state equa-
tion of the demixture are referred to as inter-
nal representation parameters ( or simply inter-
nal parameters), and the parameters in the out-
put equation as external ones. Such a distinction
enables us to train the demixing model in two
stages: internal representation and output sepa-
ration. In the internal representation stage, we
will make the state space as sparse as possible
such that the output signals can be represented as
a linear combination of the state vector x(k) and



input vector u(k). In this paper, we will employ
two approaches to train the internal parameters
and to estimate the state vector by using infor-
mation backpropagation and Kalman filtering.

In the state space framework, we suggest that
the separation of sources should be made in two
stages: the first one involves training the state
space parameters, such that the system is of
sparse information representation, the second one
involves fixing the internal parameters and train-
ing the external parameters by blind deconvolu-
tion algorithms.

2.2 Linear System Case

In order to illustrate the flexibility of the state-
space model for blind deconvolution, we elaborate
the mixing model and demixing model within the
framework of linear state-space representation.
Suppose that the mixing model is described by
a linear state discrete-time system

x(k+1) = Ax(k)+Bs(k)+Lép(k) (7)
u(k) = Cx(k)+Ds(k)+0(k) (8

where ¥ € R" is the state vector of the system,
s(k) € R™ is the vector of input signals, u(k) €
R™ is the vector of sensor signals, A € RV*V ig
the state mixing matrix, B € RV*" is an input
mixing matrix, C € R™*¥ is the output mixing
matrix and D € R™*” is the input-output mixing
matrix. If we ignore the noise terms in the mixing
model, its transfer function matrix is described by
an m X n matrix of the form

H(z) =C(zI1-A)"'B+D 9)

where 271

is a time delay operator.

We formulate the blind separation problem as
a task to recover original signals from observa-
tions u(k) without prior knowledge on the source
signals or state space matrices [A, B, C, D] be-
sides certain statistical features of the source sig-
nals. Since the mixing model is a linear state-
space system, we propose that the demixing
model here is another linear state-space system,

which is described as follows, (see Fig. 1)
x(k+1) = Ax(k)+ Bu(k) +L&g(k) (10)
y(k) = Cx(k)+ Du(k) (11)

where 8 = [A, B, L], the input u(k) of the demix-
ing model is simply the output (sensor signals)
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Fig. 1 General linear state-space model for blind
deconvolution
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of the mixing model and the & (k) is the refer-
ence model noise. Generally, the set of matri-
ces [A,B,C,D,L] are parameters to be deter-
mined in a learning process [41]-[47]. For simplic-
ity, we assume that the noise terms both in the
mixing and demixing models are negligibly small.
The transfer function of the demixing model is
W(z) = C(zI — A)"'B + D. The output y(k)
is designed to recover the source signals in the
following sense

y(k) = W(2)H()s(k) = PA(2)s(k)  (12)

where P is any permutation matrix and A(z) is
a diagonal matrix with X\;z7" in diagonal entry
(i,i), here ); is a nonzero constant and 7; is any
nonnegative integer. The recoverability of the
linear demixing model and nonlinear demixing
model will be discussed in the next section.

It is easy to see that the linear state space
model mixture is an extension of the instanta-
neous mixture. When the matrices A, B, C in the
mixing model and A, B, C in the demixing model
are null matrices, the problem is simplified to the
standard independent component analysis (ICA)
problem [6], [8], [9].

2.3 Canonical Forms

Canonical forms for linear systems are of great
importance since they provide a unique state
space representation of linear systems [35]-[37].
Therefore they play a major role in system iden-
tification where a unique parameterization of the
systems in the model set in essential to avoid
identifiability problems. Various types of canoni-
cal forms for linear systems have been introduced
and studied. Most of these canonical forms for



multi-variable systems are generalizations of the
observer or controller canonical form for single-
input single-output systems. The usefulness of a
canonical form depends on its properties. One
of the standard canonical forms, the controller
canonical form, is of particular significance since
the parameters of the canonical form have a direct
interpretation as their coefficients of the transfer
function. Moreover, this canonical form permits
a straightforward proof of the pole-shift theorem
[37]. There are, however drawbacks of the con-
troller canonical forms, particularly concerning
the resulting parameterization of linear systems.
The set of parameters in the controller form that
lead to a minimal realization is very complicated.
Fortunately, in blind deconvolution, the minimal
realization of the demixing system is neither nec-
essary nor practical. Another canonical form is
the balanced canonical form, which has a geo-
metrically well-behavior parameter space. One
of the main advantages of the balanced canonical
form is its geometric properties, for example, the
stable minimum phase system can be represented
in the Lyapunov Balanced Canonical Form.

Controller Canonical Form
If the transfer function of a system is given by

H(z) = P(2)Q7'(2) (13)

where P(z) = SN, Piz' and Q(z) =
Yo Qiz™, Q=1L

The matrices A, B, C and D for the canonical
controller form are represented as follows.

— _Q _QN _ I,
A_[Inuvn o ]’B_[O] -

C=(P, P, - Py), D=P;, (15
where @ = (Q1 Qa, -+, Qn—1)isannxn(N-1)

matrix, @ is an n(N — 1) x n null matrix, I,, and
I,(v-1) are the n x n and n(N — 1) x n(N — 1)
identity matrices, respectively. In particular, if
the system is FIR, i.e. H(z) = P(z), both A and
B are constant matrices.

Lyapunov Balanced Canonical Form

The system W = (A,B,C,D) is called
Lyapunov-balanced if the positive definite solu-
tions Y and Z to the Lyapunov equations,

AZ+ZA*+BB* =0 (16)
A'Y +YA+C'C=0 (17)

are such that
Y:ZZdiag(o-lao-Qa"'ao-n) = En (18)

with 0y > 09 > -+ > 0, > 0. The nonsingu-
lar diagonal matrix X, is called the Lyapunov-
grammian of the system. The positive numbers
01,09, -+,0p are called the Lyapunov -singular
values of the system. The canonical form of
a stable minimal system will be Lyapunov bal-
anced. This is the main advantage of the bal-
anced canonical form. Such a parameterization
for stable minimum phase systems is of impor-
tance in time series analysis, where the innova-
tion of state space model is made based an ob-
served time series. However, a disadvantage of
the balanced parameterization is that it does not
include an atlas for the manifold of systems. This
leads to a new parameterization: An overlapping
parameterization. Refer to [37] for the detailed
realization of balanced canonical forms.

3. Cost Functions for Blind
Deconvolution

Our objective is to train the demixing model
such that the output signals are as spatially mu-
tually independent and temporarily i.i.d. as pos-
sible. There are a number of cost functions which
fulfill blind deconvolution task. Commonly used
cost functions include maximum entropy, mini-
mum mutual information and maximum high or-
der cumulants.

3.1 Maximum Entropy

Assume that p(y, W) and p;(y;, W) are the
joint probability density function of y and
marginal pdf of y;, (i = 1,---,n) respectively.
The differential entropy of the output of the
demixing model is defined by

H(y,W) = —/p(y,W) log p(y, W)dy (19)

The entropy H(y, W) is generally not upper
bounded. This means that the maximum of
H(y,W) may not exist. In order to overcome
this difficulty, Bell and Sejnowski proposed that
after using a component nonlinear transformation
ony, the entropy will become upper bounded and
the maximum of entropy will always exist. Refer
to [8] for a detailed discussion.



3.2 Minimum Mutual Information

Another cost function for blind deconvolution
is the Kullback-Leibler Divergence which defines
an asymmetrical measure of two probability func-
tions [49], [50]. Let py(y) and gy(y) denote two
different probability density functions. We then
define the Kullback-Leibler Divergence between

py(y) and gy (y) as follows:

D(p,q) = /py(y) log (%) dy (20)

The Kullback-Leibler Divergence can be pre-
sented in the context of differential geometry as
the Riemannian metric in the space of the distri-
butions [49], [50]. The expression (20) can be in-
terpreted as a quasi-distance because it is always
non-negative and is equal to zero if and only if
py(y) = gy (y). Because of this property, we can
also use the Kullback-Leibler Divergence to mea-
sure the mutual independence of output signals y.
Let p;(y;) be the i-th marginal probability density
function of component y;, which is defined by

pl(yl) = /py(y)dy(i), 1= 17 N (21)

where y() is the (n — 1)-dimensional vector after
removing the i—th element from vector y. If the
output y is spatially mutually independent, then

py(y) = [ pi(wi) (22)
i=1

The Kullback-Leibler Divergence between py (y)
and gy (y) = [I;=; py, (vi) is given by

D.0) = [ ry ) tos () oy (23)

i=1 Pz’(

or we rewrite it into the mutual information form

(W) =—H(y,W)+> H(y,W) (24)
=1

where
H(y,W) = —/p(y,W) log p(y, W)dy
H(y;, W) = —/pi(yi)logpi(yi)dyi

The divergence [(W) is a nonnegative functional,
which measures the mutual independence of the

output signals y;(k). The output signals y are
mutually independent if and only if (W) =
0. Therefore, the Kullback-Leibler Divergence
D(p,T17~1 pi(yi)) can be used as a cost func-
tion for blind deconvolution. However, there
are several unknowns in the cost function: the
joint probability density function py(y) and the
marginal probability density functions p;(y;).

As shown in the Appendix 13.2, we can express
the entropy H(y) as

H(y) = —log|det(D)| + const (25)

The cost function derived from the mutual infor-
mation can be simplified as

Uy, W) = — log|det(D)] — 3" Hiy, W) (26)
=1

In order to implement the statistical on-line learn-
ing, we reformulate the cost function as

I(y, W) = —log|det(D)| — ) _logq(y;) (27)
=1

where ¢(y;) is an estimation of the true proba-
bility density function of source signals. There
are a number of methods, such as the Edgeworth
series [51] and Gram-Charlier series [9], to es-
timate the probability density function p(y;) of
y;. The Gram-Charlier series is an expansion
of a probability density function at the neigh-
borhood of the normalized Gaussian distribution

Blyi) = A=e 12,

pi(yi) = ¢(yi)

1+ ch]'(yi)] (28)
j=3

where H;(y;) are Hermite polynomials, and the
coefficients ¢; are defined in terms of the cumu-
lants of y;. Refer to [9] and [52] for further infor-
mation.

3.3 High Order Cumulants

Alternative function for blind deconvolution is
the high order statistics of the output [53]. High
order information can be expressed by using cu-
mulants. Denote C,(y;) the cumulant of order r
of the random variable y;. Then we can define a
cost function as follows

n

Iy, W) =" [Cr(y)] (29)

=1



Usually such a cost function has a disadvantage in
that we have to perform the whitening procedure
first, and then maximize the above cost function.

4. Invertiability by State Space Model

Assume that the number of sensor signals
equals the number of source signals, i.e. m = n.
In the following discussion, we restrict the mixing
model to the following form,

x(k+1) = F(x(k),s(k)) (30)
u(k) = Cx(k)+Ds(k)  (31)

where the state equation is a nonlinear dynamic
system, and the output equation is a linear one.
From a theoretical point of view, we can easily
find the inverse of the state space models in the
same form, if the matrix D is invertible. In fact,
the inverse system is expressed by

x(k+1) = F(x(k),D ' (y(k) — Cx(k))) (32)

=1

s(k) =D '(u(k) - Cx(k)  (33)

This means that if the mixing model is expressed
by (30) and (31), we can recover the source signals
using the inverse system (32) and (33). There is
an advantage to the state space model in that we
do not need to inverse any nonlinear functions
explicitly.

4.1 Linear Case

Now we concentrate on the linear system and
discuss the recoverability and representation of
the inverse system. From the definition, we have

u(k) = H(2)s(k) (34)
y(k) = W(z)u(k) (35)

The independent sources are recoverable from the
demixing model (10) and (11) if and only if

W (2)H(z) = PA(2) (36)

where P and A(z) are defined as in (12). The
question here is whether matrices [A, B, C, D] ex-
ist in the demixing model (10) and (11), such that
its transfer function W(z) satisfies (36). The an-
swer is affirmative. If the matrix D in the mixing
model satisfies rank(D) = n, and Wy(z) is the

inverse of H(z), which is defined in the Appendix,
then any state-space realization [A,B, C,D] of
a new transfer function W(z) = PA(2)Wq(2)
meets equation (11). Therefore, we have the fol-
lowing theorem:

Theorem 1 If the matriz D in the mizing model
is of full rank, i.e. rank(D) = n, then there exist
matrices [A, B, C, D], such that the output sig-
nals y of state-space system (4) and (5) recovers
the independent source signals in the sense of (6).

In blind deconvolution problems, we do not
know matrices [A,B, C,D], or the state space
dimension M. Before we train the matrices
[A,B,C,D] in the state-space model, we must
estimate the dimension M of the system if one
needs to obtain a canonical solution. There are
several criteria for estimating the dimension of a
system in system identification, such as AIC and
FPE criteria. The order estimation problem in
blind deconvolution is quite difficult, but inter-
esting. Tt remains an open problem that is not
discussed in this paper. It should be noted that
if the dimension of state vector in the demixing
model is overestimated, i.e., it is larger than that
in the mixing model, the separated signals may
contain some auxiliary time-delays, which are ac-
ceptable in blind deconvolution.

5. Basic Learning Algorithms

In this section, we develop learning algorithms
to update the external parameters W = [C, D]
in the demixing model. The basic idea is to use
the gradient descent approach to update these pa-
rameters. In order to obtain an improved learning
performance, we define a new search direction,
which is related to the natural gradient, devel-
oped by Amari [49] and Amari and Nagaoko [50].

5.1 Gradient Descent Algorithm

For simplicity we suppose that the matrix D
in the demixing model (11) is a nonsingular n. x n
matrix. The cost function for learning is derived
from mutual information as

Uy, W) = —log|det(D)| = > logai(y;) (37)
i=1

where det(D) is the determinant of the matrix D.
qi(y;) is an approximation of pdf p;(y;). For the



gradient of the cost function I(y, W) with respect
to W, we calculate the total differential di(y, W)
of [(y, W) when we take a differential dW on W,

di(y, W) =1l(y, W +dW) — i(y, W) (38)

Following Amari’s derivation for the natural gra-
dient method [2, 31], we have

di(y, W) = —tr(dDD™ ') + " (y)dy  (39)

where tr is the trace of a matrix and ¢(y) is a
vector of nonlinear activation functions
_dlogqi(yi) _ qi(yi)

pilti) = dyi iy (40)

Taking a differential of y in equation (11), we
have the following relation

dy = dCx(k) + dDu(k) + Cdx(k)  (41)

Hence, we obtain the derivatives

WEW) — oy (42)
WoW) — Dy gy’ (43)

Finally the gradient descent learning algorithm is
described by

AC(k) = —n(k)e(y)x" (44)
AD(k) = n(k)(D" —p(y)u’) (45)

where (k) is the learning rate. In this algorithm,
we must calculate the inverse matrix D~!. In or-
der to reduce the computing cost and improve the
learning efficiency, in [41] we employed the nat-
ural gradient technique by multiplying a positive
definite matrix D”D in the learning algorithm for
D. The modified learning rule for D is described
by

AD(K) = n(k)(I - p(y)u"D")D  (46)

The modification reduces the computing cost, but
does not significantly improve the learning effi-
ciency because the modified search direction is
not the natural gradient one. The algorithm in-
cludes an unknown score function ¢(y). The op-
timal one is given by equation (40) with ¢;(y;) =
pi(y;), if we can estimate the true source proba-
bility distribution p;(y;) adaptively. Another so-
lution is to give a score function according to

the statistics of source signals. Typically if a
source signal y; is super-Gaussian, one can choose
vi(y;) = tanh(y;). Respectively, if it is sub-
Gaussian, one can choose @;(y;) = y3 [54, 55]. A
question will be raised as to whether the learning
algorithm will converge to a true solution if the
approximation score functions are used. The the-
ory of the semi-parametric model for blind sepa-
ration/deconvolution ([26], [56], [57], [58]) shows
that even through a misspecified pdf is used in
learning, learning algorithms can still converge
to the true solution if certain stability conditions
are satisfied [54].

5.2 Natural Gradient Algorithm

Stochastic gradient optimization methods for
parameterized systems suffer from slow conver-
gence due to the statistical correlation of the pro-
cesses signals. While quasi-Newton and related
methods can be used to improve convergence,
they also suffer from heavy computation and nu-
merical instability, as well as local convergence
problems.

The natural gradient search scheme proposed
by Amari [1], [49] is an efficient technique for
solving iterative estimation problems. For a cost
function /(y, W), the natural gradient Vi(y, W)
is the steepest ascent direction of the cost func-
tion I(y,W). In this paper we derive the ex-
tended natural gradient by introducing a new
search direction.

From linear output equation (6), we have

u(k) = D7 (y(k) — Cx(k)) (47)
Substituting (47) into (41), we obtain
dy = (dC —dDD !C)x +dDD 'y  (48)

In order to improve the computing efficiency of
learning algorithms, we introduce a new search
direction defined as

dX;, = dC-dDD™'C (49)
dX, = dDD! (50)

It is easy to obtain the derivatives of the loss func-
tion [ with respect to matrices Xy and Xy as

dl(y, W)
0X4
ol(y, W)
0X5

= oy (k)x" (k) (51)

ey(k)y" (k) -1  (52)



Using the standard gradient descent method, we
deduce a learning rule for X; and X,

AX (k)
AXy(k) = —n(e(y(k)y" (k) —1) (54)

where 7 is a learning rate. From (49) and (50),
we obtain a novel learning algorithm to update
matrices C and D as

AC(K) =7 ((T- ¢(y)y")C - @(y)x")  (55)

AD(k) =5 (T- ¢(y)y") D(k)  (56)

In fact, the relation between the natural gradient
and the ordinary gradient can be defined by

Vi =Vi (57)

I+cfc ¢
D’c D'D

where VI = [% %]. Therefore, the

learning algorithm can be rewritten equivalently
in the following form

[AC AD] = —5(k)Vi(y, W). (58)

It is easy to see that the preconditioning matrix

D’c D'D

1+c’c c™D ]

is symmetric positive definite, and this expression
is the extension of Amari’s natural gradient to the
state space model.

The natural gradient provides a form by which
the analysis of stability becomes much easier.
The equilibrium points of the learning algorithm
satisfy the following equations

Elp(y(k)x" (k)] = 0 (59)
E[1-o(y(k)y" (k)] =0 (60)

This means that separated signals y could
achieve a mutual independence as high as possible
if the nonlinear activation function ¢(y) is suit-
ably chosen. From (55) and (56), we see that the
natural gradient learning algorithm [9] is covered
as a special case of the learning algorithm when
the mixture is simplified to an instantaneous case.

On the other hand, if the output signals y of
(11) are spatially mutually independent and tem-
porarily i.i.d. signals, it is easy to verify that y(k)

satisfies (59) and (60). In fact, from (10) and (11)
we have

x(k+1) = B Aly(k—1)  (61)

where A = A—BD~!'C, B = BD! and we have
assumed that x(0) = 0. Substituting (61) into
(59), we deduce that (59) is satisfied for the i.i.d.
property of y(k). In next section we will derive
the stability conditions of the natural gradient
algorithm for the state space model.

5.3 Lagrange Multiplier Approach

Salam and Erten [40] proposed another learn-
ing algorithm for the state space model by using
the Lagrange Multiplier. Assume that the demix-
ing model is described by (5) and (6). The aug-
mented cost function becomes

L
T(U) = 3 (k) + N (F (k) —x(k + 1))

k=1
(62)
where F (k) = Fy(x(k),u(k),®),U = (W,0)
and (k) = I(y(k),U) is given by (27), which
depends on the parameters U of the demixing
model. The Hamiltonian was defined as

H* = 1(k) + Mg Fv (k) (63)

By using the standard gradient descent approach
they presented a learning algorithm [40]

k
sk +1) = a‘iil — Fa(k) (64)
_OFN(R)T Al(k)
Mg = BT]\(rk) Ak41 + ox(k) (65)
A® OF n (k)T
= —ﬁ(k)w Akl (66)
AW = g2 (67)

Refer to [40] for a detailed derivation. It should
be noted that if the demixing model is a linear
system, the above learning algorithm for W re-
duces to the ordinary gradient descent algorithm
(44) and (45). However, the learning algorithm
(66) is not easy to implement on-line because the
system (65) is non-causal.



6. Stability of Learning Algorithm

In this section we discuss the stability of the
natural gradient algorithm (55) and (56). Since
the algorithm is derived from (53) and (54), we
only need to discuss the stability of (53) and (54).
Consider its learning rule

AX, (k) ;
AXy(k) = —n(e(y(k)y" (k) —I) (69)

The equilibrium points of the dynamical system
satisfy

Elp(y(k)x" (k)] = 0 (70)
E[1-o(y(k)y" (k)] =0 (71)

Clearly, the true solution C and D is the solution
of (70) and (71). However, this does not guaran-
tee that the C(k) and D(k) converges to the true
solution even locally. This is because if the true
solution is an unstable equilibrium point of (55)
and (56), the learning sequence C(k) and D(k)
will never converge to it.

Assume that y(k) is the recovered signal,
which is spatially mutually independent and tem-
porarily i.i.d. We will prove that y(k) is a lo-
cally stable equilibrium point of the learning al-
gorithm (68) and (69) under certain conditions
on the source signals.

Consider the average version of the learning
algorithm

AX; (k) nF1(X) (72)
AXy(k) = nF2(X) (73)
where
X = [X1,Xo], Fi(X) = =B [p(y(k)x" (k)]
and Fo(X) =1 - F [cp(y(k))yT(k)] Taking a

small variation at the equilibrium point, we have

F F
AX, (k) = (g—Xllaxl SX; 5X2> (74)
ASX (k) = (g—gaxl 2—2&2) (75)

This shows that only when all the eigenvalues of
the matrix

oF oF
oX 0X s
oFs  OFs (76)
0X 1 0X s

have negative real parts, the derived equilibrium
point is asymptotically stable. In fact, it becomes
much easier to analyze the stability by using the
variation instead of derivatives in this case. From
the definition of X; and X4, we have

by (k) = 6Xix(k) + 0Xay(k)  (77)

Consider the following variation

OF [y (k))x" (k)] = ¢ (y)0y (k)x (k)"
= ¢'(y) (0X1x(k) + 6Xoy (k) x(k)"  (78)

Using the i.i.d. property of y(k) and (78), we
derive the variational equation of X4

AGXy 5 = —HE{ "(yi %5?(1 ipwpwj]

fors =1,---
compact form

A6Xy; = —nE [p(y;)] Blxx")6X1, (80)

for 7 = 1,---,n, where X ; is the vector of the
i-th row of matrix X;. We can easily derive
the stability conditions for (80). If F[p(y;)] >
0 and E[xx!] is positive definite, the matrix
—nE [p(y;)] E[xxT] is a negative definite matrix;
therefore, all the eigenvalues of the matrix are
negative.

Following a similar procedure in deriving (80),
we derive the variational equation of Xy

ASX, = —nF |diag(¢'(y))0Xayy" ]
—nE [p(y)y” 0X]] (81)

where diag(¢'(y)) is the diagonal matrix of vec-
tor ¢'(y). For simplicity we omit the discrete
time index k in the above equation. The equa-
tion (81) can be rewritten into a two-dimensional
subsystem with a self-closed form. We take the
following notation

o; = Ely}] (82)
ki = Elgi(yi)] (83)
mi = Ely;ei(ys)] (84)



dyi

where ¢} = . Using the normalization condi-
tion (60) and the spatially mutual independence
of y, we simplify (81) to the following component
form

AdXpij =~ (Kio36Xa 5 +0X25i)  (85)
ASXy ;i = —n (njafaxw + 5X2,Z~j) (86)

for i # j, and 4,57 = 1,---,n. Similarly, we de-
rive the variational equations for the diagonal el-
ements

A6 Xy i = —n(m;i + 1)6 X4 (87)

Then the stability conditions for (85)-(87) are
summarized as

m;+1 > 0, fori=1---,n (88)

ki > 0, fori=1,---,n (89)

/@iﬁjal?a? > 1, fori,j=1,---,n (90)

which have similar form to the one given by

Amari et al [54]. In summary we have the fol-
lowing theorem

Theorem 2 If the covariance matriz E[xx"] is
positive definite and the conditions (88)-(90) are
satisfied, the true solution is the asymptotically
stable equilibrium point of the learning algorithm.

If the mixing system is linear, the condition
that the covariance matrix E(xx) is positive def-
inite can be further simplified. From the mixing
model we have

iAP 'By(k — p) (91)

Using expression (91) and the i.i.d. property of
y(k), we have

E [xx"]

where ¥, = AP~1B. If the mixing system is con-
trollable, then the matrix

00
= Z \Ilpdiag(a%, e 70-721)\]:121 (92)
p=1

() @y -+ Wy] (93)

is of full rank and the covariance matrix £ {xxT]
is positive definite.

7. Information Backpropagation

In order to develop a learning algorithm for
matrices A and B, we use the information back-
propagation approach. Combining (39) and (41),
we express the gradient of [(y, W) with respect
to x(k) as

dl(y, W)

ou = Clely() (94)

Therefore, we can calculate the derivative of
I(y, W) with respect to A and B as

oy, W) L al(y, W) dzy (k)
gA ; ok oA %)
oy, W) & iy, W) dui(k)
OB =2 dx (k) 0B (96)

where nggk) and a‘gék) are obtained by the fol-

lowing on-line iterations

M — i ap al'p(k) + 6li$j(k) (97)

8&1‘]' P Baij
Bml k +1) N (9acp
Z QAlp + 6lzuq(k) (98)
—_ abzq
forl,4,j=1,---,N and ¢ =1,---,n, where ¢ is

the Kronecker delta function. The minimization
of the loss function (37) by the gradient descent
method deduces a mutual information backprop-
agation learning algorithm as follows

N

Bag(K) = ~n(B)e(y(B) Y 6,22 (gg)
=1 tJ
N

8ty (k) = —n(k)ply (1) 30 G2 100)
1=1 a

fori,j=1,---,N and ¢ = 1,---,n, where n(k) is
a learning rate and C; is the [-th column vector
of matrix C.

Since matrices A and B are quite sparse in
the canonical forms, we do not need to update
all elements in the matrices. Here we elaborate
the learning algorithm for the controller canonical
form. In the controller canonical form, the matrix
B is a constant matrix, and only the first n rows
of matrix A are variable parameters. Denote the



vector of [-row of matrix A by a;, [ =1,---, N,

and define
ox(k) _ (6mi(k)> (101)
NXN

Bal 8alj

The derivative matrix 8;5(:;)
the following iteration

ox(k)

ox(k +1)
— = A—— + Pk 102
Do, Da, + ®(k) (102)

where ®;(k) = (6;;2(k)) v - Substituting the
above representation into (99) and (100), we have
the following learning rule for a;,

can be calculated by

Aay = —n(k)p(y (k)" C (103)
The learning algorithm updates the internal pa-
rameters of the dynamical system on-line. The
dynamical system (97) and (98) is the variational
system of the demixing model with respect to A
and B. The purpose of the system is to estimate
on-line the derivatives of x(k) with respect to A
and B. It should be noted that we must choose
very carefully the initial value of the matrices A
and B in numerical implementation. If a suitable
initial value is not chosen, the demixing system or
its variational system becomes unstable. The sta-
bility is the common problem in dynamical sys-
tem identification. One solution is to formulate
the demixing model in the Lyapunov balanced
canonical form [37].

8. State Estimator — The Kalman Filter

There is a drawback in training A and B using
the information backpropagation algorithm (99)
and (100). It may suffer from instability of the
systems, i.e. the eigenvalues of matrix A may be
located outside of the unit cycle during learning.
In order to overcome the problem, we employ the
Kalman filter to estimate the state of the system.
From output equation (11), it is observed that if
we can accurately estimate the state vector x(k)
of the system, then we can separate mixed signals
using the learning algorithm (55) and (56).

8.1 Kalman Filter

The Kalman filter is a powerful approach for
estimating the state vector in state-space models.

The function of the Kalman filter is to generate
on-line the state estimate of the state x(k). The
Kalman filter dynamics are given as follows

x(k+1) = Ax(k)+Bu(k)+Kr(k)+&x(k) (104)

where K is the Kalman filter gain matrix, and
r(k) is called the innovation or residual which
measures the error between the measured(or ex-
pected) output y(k) and the predicted output
Cx(k)+Du(k). There are a variety of algorithms
with which to update the Kalman filter gain ma-
trix K as well as the state x(k); refer to [36] and
[59] for more details.

However, in the blind deconvolution problem
there exists no explicit residual r(k) to estimate
state vector x(k) because the expected output
y(t) here means the source signals, and we can-
not measure the source signals. In order to solve
the problem, we present a new concept called hid-
den innovation in order to implement the Kalman
filter in the blind deconvolution case. Since up-
dating matrices C and D will produce an innova-
tion in each learning step, we introduce a hidden
innovation as follows

r(k) = Ay(k) = ACx(k) + ADu(k)  (105)

where AC = C(k + 1) — C(k) and AD = D(k +
1) — D(k). The hidden innovation presents the
adjusting direction of the output of the demix-
ing system and is used to generate an a poste-
riori state estimate. Once we define the hidden
innovation, we can employ the commonly used
Kalman filter to estimate the state vector x(k),
as well as to update the Kalman gain matrix K.
The updating rule in this paper is described as
follows:
(1) Compute the Kalman gain

K = P,C[(CyP,C] + Ry) !
(2) Update estimate with hidden innovation
x, = xi + Kgr(k)
(3) Update the error covariance
P, = (I - K,C,k)P
(4) evaluate the state vector ahead

Xk+1 = Ak}ACk + Bkuk



(5) evaluate the error covariance ahead
Py = ArPrAf + Qp

where Qi and Ry are the covariance matrices
of the noise vector £r and output measurement
noise ng, respectively.

The theoretic problems such as convergence
and stability remain to be analyzed. Simulation
experiments show that the algorithm, based on
the Kalman filter, can separate the convolved sig-
nals very well.

9. Two-stage Separation Algorithm

In this section we present a novel two-stage
separation algorithm for state-space models. In
this approach we decompose the separation prob-
lem into the following two stages. First we sepa-
rate the mixed signals in the following sense

W(2)H(z) = PQ(2) (106)

where Q(2) = diag(q1(2), -+ ,qn(2)) is a diago-
nal matrix with polynomials of z=! in its diago-
nal entity. At this stage the output signals are
mutually independent but in single channel con-
volution. Therefore, we need only to apply single
channel equalization methods, such as the natu-
ral gradient approach or Bussgang methods, to
obtain the temporarily i.i.d. recovered signals.

The question here is whether matrices
[A, B, C,D] exist in the demixing model (10) and
(11), such that its transfer function W(z) satis-
fies (106). The answer is affirmative. Suppose
that there is a inverse filter Wq(z) of H(z) in the
sense of (10). Since Wy(z) is a rational polyno-
mial of 27!, we know that there is a state-space
realization [Ag, B, Co, Dg] of Wy(2). Then we
rewrite Wy (z) into following form

WU(Z) = Do+ CU(ZI — Ag)leo

N .
= > Piz '/q(z71) (107)
i=0

We can construct a linear system with transfer
function "N P;z " as follows

o’ o I
A = nlL,B=| " |08
[Inwl) ‘9] [O]( )
= (Pl,PQ,“‘,Pn), D =Py (109)

where I,(y_1) is an n(N — 1) x n(N — 1) identity
matrix, O,, are an n X n zero matrix, and O is
an n(N — 1) x n zero matrix, respectively. Then
we deduce that W(z) = D + C(zI — A) !B =
Wy (2)q(z~"). Thus we have

W(2)H(z) = PA(z)q(="') = PQ(z)  (110)

where Q(z) is a diagonal matrix with polynomials
of 27! in its diagonal entities. It is easily seen that
both A and B are constant matrices. Therefore,
we have only to develop a learning algorithm to
update C and D so as to obtain the separated
signals in the sense of (106).

On the other hand, we know that if the ma-
trix D in the mixing model satisfies rank(D) = n,
then there exist matrices [A, B, C, D], such that
the output signal y of state-space system (10)
and (11) recovers the independent source signals
in the sense of (106). Therefore, we have the fol-
lowing theorem:

Theorem 3 If the matriz D in the mizing model
satisfies rank(D) = n, then for given specific
matrices A and B as (108), there exist matri-
ces [C, D], such that the transfer matriz W(z) of
the system (10) and (11) meets equation (106).

The two-stage blind deconvolution is realized
in the following way: first we give the matrices
A and B of the state equation in the form (108),
and then employ the natural gradient algorithm
to update C and D. We intend to make the out-
put of the demixing model as spatially mutually
independent as possible. After the first stage the
outcome signals are in the following form

(k) = q(2)s;(k), fori=1,---.n (111)

Then we employ the natural gradient algorithm
for double finite FIR filter, to remove the con-
volved signals. From computer simulations we
see that the two-stage approach can also recover
the source signals mixed by a non-minimum phase
system.

10. Learning Algorithm for
Nonlinear Models

In this section we employ the mutual infor-
mation backpropagation approach to train the



neural network in the demixing model. The mu-
tual information backpropagation is based on the
real-time recurrent learning. The algorithm ad-
justs the synaptic weights of a fully connected
recurrent network in real time [60]. In this paper
we extend the real-time recurrent learning to the
generalized blind deconvolution case.

Consider the demixing model in the following
form

x(k+1) = Fy(x(k),uk),®) (112)
y(k) = Cx(k)+Du(k))  (113)

where Fy(x(k),u(k), ®) is a certain neural net-
work and © is the training parameters of the net-
work.

Following the same derivation for (55) and
(56), we have

di(y, W) = —tr(dDD™ ") + " (y)dy  (114)

Taking a differential of y in equation (112), we
have the following relation

dy = dCx(k) + dDu(k) + Cdx(k)  (115)

If we introduce a new search direction as in (49)
and (50), we can derive a learning algorithm for
C and D, which is the same as (55) and (56).
The updating rule for the parameters ® is to
use the information backpropagation technique.

From (114) and (115), we derive the derivative
ol(y, W)

00
00 ox(k) 00O
where '5);—((_;) is recurrently calculated by
ox(k+1) 0F(k)ox(k) 0OF(k)
= 11
90 ox(h) 00 " oo (117

where F(k) = Fn(x(k),u(k),®). The above two
equations are only written formally; the precise
representation should be in tensor format. The
recurrent equation (117) estimates the derivative
of state vector x(k) with respect to the synaptic
weights @ of the neural network. Using the gra-
dient descent approach, we derive the updating
rule for ®

ox (k)
00

A® = —n¢'(y(k))"C (118)

where 7 is a learning rate.

In order to give an explicit form to the in-
formation backpropagation algorithm, one must
employ a neural network with general approx-
imation to approximate the nonlinear mapping
Fn(x(k),u(k),®). There are a number of neu-
ral networks suitable for this purpose, such as the
Support Vector Machine, the Radial Based Func-
tions and Multilayer Perceptrons. In this paper
we use the Support Vector Machine (SVM) and
derive the explicit learning algorithm for training
the neural network. A Support Vector Machine
for function approximation and pattern recogni-
tion utilizes a kernel function to map the data to
a Hilbert space, in which the problem becomes
linear. The SVM for function approximation is
of the following form

L
Fn(z)=> V,K(z,2,) +b (119)
p=1

where z = [x”,u’]T 2z, € RV"*" b € R", and
V, = (vpj) € RV*NF0) | The vector elements
z,, weights V,, and b are parameters that are
to be determined by the learning process, and
the kernel K(z,z,) is usually chosen in advance,
which satisfies Mercer’s condition. Refer to [61]
for detailed information about the SVM and the
kernel function. The recurrent equations for the
parameters V,,z, and b are expressed by

ox(k+1) _ 0Fn(k) ox(k)

+ 1K, (120)

pi;  OxXT(k) Ovpj
ox(k+1)  OFn(k) ox(k) . 0K,
_ 121
zp.i oxT'(k) 0zp,; +Vp(9zp,z~ (121)
ox(k+1)  OFn (k) ox(k)
- 1, 122
b, oxT (k) ab v (2
OF n (k)

where

oxT (k) Z;l;zl VP 3{;1(?,(2;3) ) ’CP

K(z,2,), and I;; is an N x (N +n)-matrix with all
zero elements except the (i, j)-th element equal to
1. I; is a N —dimensional vector with all zero ele-
ments except the i-element equal to 1. Therefore,

the updating rule for V,,, z, and b in the SVM is

Avpij = —nw’(y(k))TCg);—g (123)
Azp; = —n¢(y(k)" aa};ili) (124)
_ / ox (k)

Ab; = —n¢(y(k))'C o (129)



Because of the approximation of nonlinear func-
tion by SVM, it unavoidably produces a model
bias, which leads to a model error. In order to
compensate for the model bias, we can also intro-
duce the state estimator—Extended Kalman Fil-
ter approach to estimate the state vector of the
demixing model. A detailed analysis of the Ex-
tended Kalman Filter for blind deconvolution will
be presented in a separate paper.

11. Computer Simulations

In this section we present a number of com-
puter simulations to demonstrate the validity and
effectiveness of the natural gradient algorithm,
the information backpropagation algorithm and
the Kalman filter for blind deconvolution. Com-
parisons between several basic separation algo-
rithms are also given.

To evaluate the performance of the proposed
learning algorithms, we employ the multichannel
intersymbol interference [33], denoted by Mgy,
as a criteria,

n ; Gpij| — maxp ;
MISI:Z‘Z]ZP‘ P’LJ‘ P.J

=1

Gpij|

maxp j |Gpijl

Gyij|

= i 2-p |Gpij| — maxp
+Z 1> Zp| pij| — max;, (126)
j=1

maxp ; |Gpij|

It is easy to show that Mj;s; = 0 if and only if
G(z) is of the form (36). In order to avoid the
effect of a single numerical trial on evaluating the
performance of algorithms, we use the ensemble
average approach, that is, in each trial we ob-
tain a time sequence of Mgy, and then we take
average of the IST performance to evaluate the
performance of algorithms.

The learning rate is another important factor
in implementing the natural gradient algorithm.
The strategy in this paper is to update the learn-
ing rate by n(k 4+ 1) = max{0.9n(k),107*}; for
each 200 iterations, the initial value n(0) = 10~2.

11.1  The Natural Gradient Algorithm vs. the
Ordinary Gradient Algorithm

A large number of computer simulations have
been performed to compare the learning perfor-
mance of the natural gradient algorithm (55) and
(56) with the ordinary gradient algorithm (44)

and (45). In this group of simulations, we as-
sume that the internal parameters in the demix-
ing model are predetermined and represented in
the controller canonical form (14).

The mixing model used for computer simula-
tions is the multichannel ARMA model

N N
u(k) + > Aju(k —i) =) Bis(k —i) + v(k)
=1 =0

(127)
where u,s and v € R3. The matrices A; € R3*3
and B; € R**3 are randomly chosen such that
the mixing system is stable and minimum phase.
The source signals s are randomly generated i.i.d
signals uniformly distributed in the range (-1,1),
and v are the Gaussian noises with zero mean
and a covariance matrix 0.1I. The nonlinear ac-
tivation function is chosen to be ¢;(y;) = y3 for
any 4.

Example 1. We employ an AR model of or-
der N = 10 as a mixing system, which can be
exactly inverted by a FIR filter. A large num-
ber of simulations show that the natural gradient
learning algorithm can easily and quickly recover
source signals in the sense of W(z)H(z) = PA.

Figure 2 illustrates 100 trial ensemble average
Mg performances of the natural gradient learn-
ing algorithm and the ordinary gradient learn-
ing algorithm. It is observed that the natural
gradient algorithm usually needs less than 3000
iterations to obtain satisfactory results, while
the ordinary gradient algorithm needs more than
20000 iterations to obtain satisfactory results,
since there is a long plateau in the ordinary gra-
dient learning.

11.2 Information Backpropagation

In the previous subsection we assumed that
the internal parameters are designed as fixed ma-
trices. However, in many practical applications,
we need to train both the internal parameters
and external parameters. If we know nothing
about the demixing model, a general solution is
to choose an initial value for A and B in the con-
troller canonical form, then use the information
backpropagation to update the internal parame-
ters during training.

Example 2. We assume that the mixing sys-
tem is an ARMA model of order 10, which is sta-
ble and minimum phase. The transfer function
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Fig. 3 The coefficients of H(z) of the mixing
system for Example 2

of the mixing system is plotted in Fig. 3. The
demixing system is chosen to be a state space sys-
tem of order 40, and the initial values for A and B
are in the form (108). From the simulation we see
that if we do not update A and B, the outcome
of the recovered signal cannot be perfect. After
training A by using algorithm (103), we can re-
cover source signals quite well. Fig. 4 plots the
global transfer function G(z) = W(z)H(2) up to
order 60.

From computer simulations we see that the
overestimation of system order N essentially do
not affect the outcome of the learning algorithm,
but it only increases the computing cost.
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Fig. 4 The coefficients of G(z) after 3000
iterations for Example 2

11.3 Kalman filter implementation

Because the approximation of internal param-
eters will unavoidably produce a model bias, we
employ the Kalman filter to compensate for the
model bias and reduce the effect of noise. Sev-
eral numerical simulations have been performed
to demonstrate the performance of the Kalman
filter. Here we give only one illustrative example.

Example 3. The transfer function of the mix-
ing system is plotted in Fig. 5. It is assumed to
be unknown for the algorithm.

Assume that source signals are i.i.d quadra-
ture amplitude modulated (QAM). The Gaussian
noise represented by v was zero mean with a co-
variance matrix 0.1I. The initial values for ma-
trices A and B in the state equation are chosen
to be ones in canonical controller form and the
initial value for matrix C is set to a zero ma-
trix or given randomly in the range (-1,1), and
D =1I; € R¥3.

We use the natural gradient algorithm (GD) to
train the output matrices C and D, use the in-
formation backpropagation (IB) algorithm (103)
to estimate the state matrix A and employ the
Kalman filter (KF) to estimate the state vector
x(k) of the system as well. Figures 6 and 7 show
the sensor signal constellation, output constel-
lation of demixing system by using the natural
gradient algorithm, information backpropagation
and Kalman filter, respectively.

It is worth noting that the output signals con-
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Fig. 7 Output constellation for Example 3

verge to the characteristic QAM constellation, up
to an amplitude and phase rotation factors ambi-
guities.

12. Conclusion

In this paper we have presented a general
framework of the state space approach for mul-
tichannel blind deconvolution/separation. The
state space model allows us to separate blind
deconvolution in two steps: supervised learning
for internal parameters and unsupervised learn-
ing for external parameters. Adaptive learning
algorithms for updating external parameters are

developed by minimizing the suitable cost func-
tion, which is derived from mutual information of
output signals. The information backpropagation
approach technique is developed for training the
internal parameters as an alternative method. An
state estimator based on the Kalman filter is also
presented in order to amend the model bias and
reduce the effect of noise. Finally we give sugges-
tions for how to extend the information backprop-
agation to the nonlinear case. Computer simula-
tions are given to demonstrate the validity and
effectiveness of the state-space approach.

13. Appendix
13.1  Inverse of Linear State Space Model

Suppose that D satisfies rank(D) = n, and

D' is the generalized inverse of D, in the sense of
a Penrose generalized pseudo-inverse. Let

D=D', A—-A=BC
B =BD, C=-DC
then the global system can be described as
G(z) =W(2)H(z) =1 (128)

The state transform does not change the transfer
functions, for any nonsingular transform T, if the
following relation holds

A = TA-BDCO)T!

B — TBD'
c = -D'cT!
D = D'

Therefore, source signals can be recovered by lin-
ear state space demixing model (10) and (11).

13.2 Derivation of Cost Function

We consider n observations {u;(k)} and n out-
put signals {y;(k)} with length L.

Uk) = [u"(1),u"(2),
Yk) = [y 1),y (2),

where u(k) = [uy(k), -, un(k)]" and y(k) =
[y1(k), - ,yn(k)]. The task of blind deconvolu-
tion is to train a state space demixing model such

ul(@)”
Ly (@”



that the joint probability density of ) is factor-
ized as follows:

n L
p(Y) = [I I »i(wi(k)) (129)
i—1 k=1

where {p;(-)} is the probability density of source
signals. In order to measure the mutual indepen-
dence of output signals, we employ the Kullback-
Leibler divergence as a criterion, which is an
asymmetric measure of distance between two dif-
ferent probability distributions,

p()
[Ti H%:l qi(yi(k))
(130)
where we replace p;(-) by certain approximate
density functions ¢;(-) for estimated sources, since
we do not know the true probability distributions
pi(+) of original source signals.
Provided that initial conditions are set to
x(1) = 0, we have the following relation

KL(W() = 1 [ p9)log

Yy =Wu (131)
where W is given by
Hy 0 o 0 0
H,; Hy o 0 0
W = : ; (132)
H, ., H,3 = Hy 0
H;, H;» --- H; Hp

where H; for i+ = 0,1,--- are the Markov pa-

rameters defined by Hy = D, H; = CA'" !B,
i = 0,1,---. According to the property of the
probability density function, we derive the fol-
lowing relation between p(i) and p(}):

p(Y) = pl)

= 133
| det HY| (133)

Using the relation (130), we derive the cost func-
tion [(W(z)) as follows

n L
(W(2) = ~log | det Hy |~ 3" 73 logas(3i(k))
k

i=1"" k=1
(134)
Note that p(U) was not included in (134) because
it does not depend on the set of parameters {W}.
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