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Abstract 

In this paper we discuss the semi parametric statistical model for blind 
deconvolution. First we introduce a Lie Group to the manifold of non­
causal FIR filters. Then blind deconvolution problem is formulated in 
the framework of a semiparametric model, and a family of estimating 
functions is derived for blind deconvolution. A natural gradient learn­
ing algorithm is developed for training noncausal filters. Stability of the 
natural gradient algorithm is also analyzed in this framework. 

1 Introduction 

Recently blind separation/deconvolution has been recognized as an increasing important 
research area due to its rapidly growing applications in various fields, such as telecom­
munication systems, image enhancement and biomedical signal processing. Refer to re­
view papers [7] and [13] for details. A semi parametric statistical model treats a family 
of probability distributions specified by a finite-dimensional parameter of interest and an 
infinite-dimensional nuisance parameter [12]. Amari and Kumon [10] have proposed an 
approach to semiparametric statistical models in terms of estimating functions and eluci­
dated their geometric structures and efficiencies by information geometry [1]. Blind source 
separation can be formulated in the framework of semi parametric statistical models. Amari 
and Cardoso [5] applied information geometry of estimating functions to blind source sep­
aration and derived an admissible class of estimating functions which includes efficient 
estimators. They showed that the manifold of mixtures is m-curvature free, so that we 
can design algorithms of blind separation without taking much care of misspecification of 
source probability functions. 

The theory of estimating functions has also been applied to the case of instantaneous mix­
tures, where independent source signals have unknown temporal correlations [3]. It is also 
applied to derive efficiency and superefficiency of demixing learning algorithms [4]. 

Most of these theories treat only blind source separation of instantaneous mixtures. It is 
only recently that the natural gradient approach has been proposed for multichannel blind 



364 L.-Q. Zhang, S. Amari and A. Cichocki 

deconvolution [8], [18]. The present paper extends the geometrical theory of estimating 
functions to the semiparametric model of multichannel blind deconvolution. For the limited 
space, the detailed derivations and proofs are left to a full paper. 

2 Blind Deconvolution Problem 

In this paper, as a convolutive mixing model, we consider a multichannel linear time­
invariant (LTI) systems, with no poles on the unit circle, of the form 

00 
x(k) = L Hps(k - p), (1) 

p=-oo 

where s(k) is an n-dimensional vector of source signals which are spatially mutu­
ally independent and temporarily identically independently distributed, and x(k) is an 
n-dimensional sensor vector at time k, k = 1,2, . . '. We denote the unknown mixing filter 
by H(z) = 2::-00 Hpz-p. The goal of multichannel blind deconvolution is to retrieve 
source signals s(k) only using sensor signals x(k), k = 1,2"", and certain knowledge 
of the source signal distributions and statistics. We carry out blind deconvolution by using 
another multichannel LTI system of the form 

y(k) = W(z)x(k), (2) 

where W(z) = 2:~=-N Wpz-P, N is the length of FIR filter W(z), y(k) 
[Yl (k), ... ,Yn(k)V is an n-dimensional vector of the outputs, which is used to estimate 
the source signals. 

When we apply W(z) to the sensor signal x(k), the global transfer function from s(k) 
to y(k) is defined by G(z) = W(z)H(z). The goal of the blind deconvolution task is 
to find W(z) such that G(z) = PAD(z), where P E R nxn is a permutation matrix, 
D(z) = diag{z-d1 , ••• ,z- dn }, and A E R n x n is a nonsingular diagonal scaling matrix. 

3 Lie Group on M (N, N) 

In this section, we introduce a Lie group to the manifold of noncausal FIR filters. The Lie 
group operations playa crucial role in the following discussion. The set of all the noncausal 
FIR filters W (z) of length N, having the constraint that W is nonsingular, is denoted by 

M(N,N) = {W(Z) I W(z) = .tN W.z- · , det(W) # o}, (3) 

where W is an N x N block matrix, 

... W_N+ll 

... W - N+2 

. . . . 
Wo 

(4) 

M(N, N) is a manifold of dimension n 2 (2N + 1). In general, multiplication of two filters 
in M(N, N) will enlarge the filter length and the result does belong to M(N, N) anymore. 
This makes it difficult to introduce the Riemannian structure to the manifold of noncausal 
FIR filters. In order to explore possible geometrical structures of M(N, N) which will 
lead to effective learning algorithms for W (z) , we define algebraic operations of filters in 
the Lie group framework. First, we introduce a novel filter decomposition of noncausal 
filters in M (N, N) into a product of two one-sided FIR filters [19], which is illustrated in 
Fig. 1. 
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Figure 1: Illustration of decomposition of noncausal filters in M (N, N) 

Lemma 1 [19] If the matrix W is nonsingular, any noncausalfilter W(z) in M(N,N) 
has the decomposition W(z) = R(z)L(z-l), where R(z) = L::=o Rpz-P, L(Z-l) = 
L::=o LpzP are one-sided FIR filters. 

In the manifold M(N, N), Lie operations, multiplication * and inverse t, are defined 
as follows: For B(z), C(z) E M(N, N), 

B(z) * C(z) = [B(z)C(z)]N' Bt(z) = Lt(Z-l)Rt(z), (5) 

where [B(Z)]N is the truncating operator that any terms with orders higher than N in the 
polynomial B (z) are truncated, and the inverse of one-side FIR filters is recurrently defined 

by ~ = RO l , at = - L::=l Rt_qRqROl , p = 1,'" ,N. Refer to [18] for the detailed 
derivation. With these operations, both B(z) * C(z) and Bt (z) still remain in the manifold 
M (N, N). It is easy to verify that the manifold M (N, N) with the above operations forms 
a Lie Group. The identity element is E(z) = I. 

4 Semiparametric Approach to Blind Deconvolution 

We first introduce the basic theory of semiparametric models, and formulate blind decon­
volution problem in the framework of the semiparametric models. 

4.1 Semiparametric model 

Consider a general statistical model {p( Xj 6, en, where x is a random variable whose 
probability density function is specified by two parameters, 6 and e, 6 being the param­
eter of interest, and e being the nuisance parameter. When the nuisance parameter is of 
infinite dimensions or of functional degrees of freedom, the statistical model is called 
a semiparametric model [12]. The gradient vectors of the log likelihood u(Zj 6, e) = 
81ogp(z;6.e) v(z, 6 ~) - 81ogp(z;6,e) are called the score functions of the parameter 

80 ' ,,'it - 8( , 

of interest or shortly 6-score and the nuisance score or shortly e -score, respectively. 

In the semiparametric model, it is difficult to estimate both the parameters of interest and 
nuisance parameters at the same time, since the nuisance parameter e is of infinite degrees 
of freedom. The semiparametric approach suggests to use an estimating function to es­
timate the parameters of interest, regardless of the nuisance parameters. The estimating 
function is a vector function z(x, 6), independent of nuisance parameters e, satisfying the 
following conditions 

1) Eo,dz(x,6)] = 0, 
8z(x,6) 

2) det(lC) i= 0, where IC = Eo,d 88 ]. 

(6) 

(7) 
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3) Eo ,dz(x, 8)zT (x, 8)] < 00, (8) 

for all 8 and e. Generally speaking, it is difficult to find an estimating function. Amari 
and Kawanabe [9] studied the information geometry of estimating functions and provided 
a novel approach to find all the estimating functions. In this paper, we follow the approach 
to find a family of estimating functions for bind deconvolution. 

4.2 Semiparametric Formulation for Blind Deconvolution 

Now we tum to formulate the blind deconvolution problem in the framework of semi para­
metric models. From the statistical point of view, the blind deconvolution problem is to 
estimate H(z) or H- 1(z) from the observed data VL = {x(k), k = 1, 2", .}. The es­
timate includes two unknowns: One is the mixing filter H(z) which is the parameter of 
interest, and the other is the probability density function p(s) of sources, which is the nui­
sance parameter in the present case. FOIf blind deconvolution problem, we usually assume 
that source signals are zero-mean, E[sil' = 0, for i = 1"", n. In addition, we generally 
impose constraints on the recovered signals to remove the indeterminacy, 

(9) 

A typical example of the constraint is ki ( Si) = sf -1. Since the source signals are spatially 
mutually independent and temporally iid, the pdfr(s) can be factorized into a product form 
r(s) = TI~l r(si). The purpose of this paper is to find a family of estimating functions 
for blind deconvolution. Remarkable progress has been made recently in the theory of the 
semiparametric approach [9],[12]. It has been shown that the efficient score itself is an 
estimating function for blind separation. 

5 Estimating Functions 

In this section, we give an explicit form of the score function matrix of interest and the 
nuisance tangent space, by using a local nonholonomic reparameterization. We then derive 
a family of estimating functions from it. 

5.1 Score function matrix and its representation 

Since the mixing model is a matrix filter, we write an estimating function in the same matrix 
filter format 

N 

F(x;H(z)) = L Fp(x;H(z))z-P, (10) 
p= -N 

where F p(x; H(z)) are n x n-matrices. In orderto derive the explicit form ofthe H-score, 
we reparameterize the filter in a small neighborhood of H (z) by using a new variable matrix 
filter as H(z) * (I - X(z)), where 1 is the identity element of the manifold M(N, N). 
The variation X(z) represents a local coordinate system at the neighborhoodNH of H(z) 
on the manifold M(N, N). The variation dH(z) of H(z) is represented as dH(z) = 
-H(z) * dX(z). Letting W(z) = Ht(z), we have 

dX(z) = dW(z) * wt(z) , (11 ) 

which is a nonholonomic differential variable [6] since (11) is not integrable. With this 
representation of the parameters, we can obtain learning algorithms having the equivariant 
property [14] since the deviation dX(z) is independent of a specific H(z). The relative or 
the natural gradient of a cost function on the manifold can be automatically derived from 
this representation [21, [14], [18]. 
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{p(x;e,;)} 

{p(x;9,e)} 

Figure 2: Illustration of orthogonal decomposition of score functions 

The derivative of any cost function l(H(z)) with respect to a noncausal filter X(z) -
E:==-N Xpz-P is defined by 

N 
8l(H(z» _ L 8l(H(z» z-p 
aX(z) p==-N axp 

Now we can easily calculate the score function matrix of non causal filter X(z), 
N 

alogp(XiH(z),r) _ '"' () T(k _ ) -p 
aX(z) - L.J lP Y Y P z , 

p=-N 

where lP(y) = ('Pi(Yi),"', 'Pn(Yn»T, 'Pi(Yi) = dlO~;:(II/). and y = Ht(z)x. 

S.2 Efficient scores 

(12) 

(13) 

The efficient scores, denoted by UE(s; H(z), r), can be obtained by projecting the score 
function to the space orthogonal to the nuisance tangent space TJ'{z},r' which is illustrated 
in figure 2. In this section, we give an explicit form of the efficient scores for blind decon­
volution. 

Lemma 2 [5} The tangent nuisance space TJ'{z),r is a linear space spanned by the nui­

sance score junctions, denoted by TJ'{z),r = {E:=I CiOi(Si)} , where Ci are coefficients, 
and ai(si) are arbitrary junctions, satisfying the/ollowing conditions 

E[ai(si)2] < 00, E[sai(si)] = 0, E[k(si)ai(si») = O. (14) 

We rewrite the score function (13) into the form U(s; H(z), r) = E!-N Upz-P, where 
Up = (cp(si(k»sj(k - P»nxn. 

Lemma 3 The off-diagonal elements UO,ij(S; H(z), r), i =/: j, and the delay elements 
Up,ij(S; H(z), r), P =/: 0, 0/ the score junctions are orthogonal to the nuisance tangent 

space TJ(z),r' 

Lemma 4 The projection 0/ UO,ii to the space orthogonal to the nuisance tangent space 
TJ(z),r is o/the/orm W(Si) = Co + CISi + C2k(Si), where Cj are any constants. 
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In summary we have the following theorem 

Theorem 1 The efficient score, UE(s; H(z), r) = L::=-N U: z-P, is given by 

U: <p(s)sT(k - p), for p:f. 0; (15) 

U~ 
for off diagonal elements, 
for diagonal elements. 

(16) 

For the instantaneous mixture case, it has been proven [9] that the semiparametric model 
for blind separation is information m-curvature free. This is also true in the multichannel 
blind deconvolution case. As a result, the efficient score function is an estimating function 
for blind deconvolution. Using this result, we easily derive a family of estimating functions 
for blind deconvolution 

N 

F(x(k); W(z)) = L c.p(y(k))y(k - pf z-P - I , (17) 
p=-N 

where y(k) = W(z)x(k), and <p is a given function vector. The estimating function is the 
efficient score function, when Co = Cl = 0, C2 = 1 and ki(Si) = c.pi(sdsi - 1. 

6 Natural Gradient Learning and its Stability 

Ordinary stochastic gradient methods for parameterized systems suffer from slow conver­
gence due to the statistical correlations of the processes signals. While quasi-Newton and 
related methods can be used to improve convergence, they also suffer from the mass com­
putation and numerical instability, as well as local convergence. 

The natural gradient approach was developed to overcome the drawback of the ordinary 
gradient algorithm in the Riemannian spaces [2, 8, 15]. It has been proven that the natural 
gradient algorithm is an efficient algorithm in blind separation and blind deconvolution [2]. 

The efficient score function ( the estimating function) gives an efficient search direction 
for updating filter X(z) . Therefore, the updating rule for X(z) is described by 

Xk+l(Z) = Xk(z) -1]F(x(k), Wk(Z)), (18) 

where 1] is a learning rate. Since the new parameterization X(z) is defined by a nonholo­
nomic transformation dX (z) = dW (z) * wt (z ), the deviation of W (z) is given by 

~ W(z) = ~X(z) * W(z). (19) 

Hence, the natural gradient learning algorithm for W (z) is described as 

Wk+l(Z) = Wk(Z) -1]F(x(k), Wk(z)) * Wk(z) , (20) 

where F(x, W (z)) is an estimating function in the form (17). The stability ofthe algorithm 
(20) is equivalent to the one of algorithm (18). Consider the averaged version of algorithm 
(18) 

~X(z) = -1]E[F(x(k), Wk(Z))] . (21) 

Analyzing the variational equation of the above equation and using the mutual indepen­
dence and i.i.d. properties of source signals, we derive the stability conditions of learning 
algorithm (21) at vicinity of the true solution 

mi + 1 > 0, K.i > 0, K.iK.ja;aJ > 1, (22) 

for i , j = 1," ' , n, where mi = E(c.p'(Yi (k))y;(k)], K.i = E[c.p~(Yi)], a; = E[IYiI 2 ]. 

Therefore, we have the following theorem: 

Theorem 2 If the conditions (22) are satisfied, then the natural gradient learning algo­
rithm (20) is locally stable. 
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