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Brain-computer interface (BCI) systems create a novel communication channel from the brain to an output device bypassing
conventional motor output pathways of nerves and muscles. Modern BCI technology is essentially based on techniques for the
classification of single-trial brain signals. With respect to the topographic patterns of brain rhythm modulations, the common
spatial patterns (CSPs) algorithm has been proven to be very useful to produce subject-specific and discriminative spatial filters;
but it didn’t consider temporal structures of event-related potentials which may be very important for single-trial EEG classifica-
tion. In this paper, we propose a new framework of feature extraction for classification of hand movement imagery EEG. Computer
simulations on real experimental data indicate that independent residual analysis (IRA) method can provide efficient temporal fea-
tures. Combining IRA features with the CSP method, we obtain the optimal spatial and temporal features with which we achieve
the best classification rate. The high classification rate indicates that the proposed method is promising for an EEG-based brain-
computer interface.
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1. INTRODUCTION

Brain-computer interfaces (BCIs) provide new communica-
tion and control channels that do not depend on the brain’s
normal output channels of peripheral nerves and muscles
[1]. The BCI research aims at the development of a sys-
tem that allows direct control of a computer application or
a neuroprosthesis, solely by human intentions reflected by
certain brain signals [2]. We mainly focus on noninvasive,
electroencephalogram- (EEG-) based BCI systems which can
be used as tools of communication for the disabled or for
healthy subjects who might be interested in exploring a new
path of human-machine interfacing.

EEG-based BCI has received increasing attention recently
[3–5]. The EEG allows the observation of gross electrical
fields of the brain and reflects changes in neural mass ac-
tivity associated with various mental processes. A physically
disabled person with controlling his thoughts has potential
to use the mental processes for communication. The feasi-
bility of this communication depends on the extent to which
the EEGs associated with these mental processes can be reli-

ably recognized automatically. The electrophysiological phe-
nomena investigated most in the quest for an automatic dis-
crimination of mental states are event-related potential (EP)
[3], and localized changes in spectral power of spontaneous
EEG related to sensorimotor processes [4, 5]. For noninva-
sive BCI systems that based on discrimination of voluntarily
induced brain states, some approaches have been proposed.
The Tübingen thought translation device (TTD) [6] enables
subjects to learn self-regulation of slow cortical potentials
(SCP), that is, electro cortical positivity and negativity. Af-
ter training in experiments with vertical cursor movement as
feedback navigated by the SCP from central scalp position,
patients are able to generate binary decisions in a 4–6 seconds
pace with an accuracy of up to 85%. Users of the Albany BCI
system [7] are able to control a cursor movement by their os-
cillatory brain activity into one of two or four possible targets
on the computer screen and achieve over 90% hit rates after
adapting to the system during many feedback sessions with a
selection rate of 4-5 seconds in the binary decision problem.
Based on event-related modulations of the pericentral μ- or
β-rhythms of sensorimotor cortices (with a focus on motor
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Figure 1: Channel spectra and associated topographical maps dur-
ing hand movement imagery.

preparation and imagination), the Graz BCI system achieved
accuracies of over 96% in a ternary classification task with a
trial duration of 8 seconds by evaluation of adaptive autore-
gressive (AAR) models. Note that there are other BCI sys-
tems which rely on stimulus/response paradigms, for exam-
ple, P300, see [2] for an overview. In [8, 9], the common spa-
tial subspace decomposition (CSSD) method was proposed
for classification of finger movement and BCI competition
2003-data set IV. The common spatial patterns (CSPs) ap-
proach [10, 11] was suggested to be used in the BCI con-
text. This algorithm extracts event-related desynchronization
(ERD), that is, event-related attenuations in some frequency
bands, for example, μ/β-rhythm. Further in [12], a first mul-
ticlass extension of CSP was presented based on pairwise
classification and voting. In this paper, we further extend
this approach for extracting both temporal and spatial fea-
tures of EEG recordings of imaginary left- and right-hand
movements. In order to find better features for classifica-
tion, we use temporal independent component analysis (i.e.,
IRA) [13] and CSP together for feature extraction. The rest
of the paper is organized as follow. In Section 2, we introduce
the neurophysiological background about BCI. In Section 3,
temporal independent component analysis method is de-
rived in detail. In Section 4, we elaborate the whole proce-
dure of EEG processing including data acquisition, prepro-
cessing, feature extraction, and classification. Finally, classi-
fication results are presented and compared with other algo-
rithms.

2. NEUROPHYSIOLOGICAL BACKGROUND

Macroscopic brain activity during resting wakefulness con-
tains distinct “idle” rhythms located over various brain areas,
for example, the μ-rhythm can be measured over the peri-
central sensorimotor cortices in the scalp EEG, usually with
a frequency of about 10 Hz. Furthermore, there also exists β-
rhythm around 20 Hz over the human motor cortex. There-
fore, 10 Hz μ-rhythm and 20 Hz β-rhythm usually coexist in
noninvasive scalp EEG recordings (see Figure 1).

As described in [14], each part of the human body ex-
ists a corresponding region in the primary motor and pri-
mary somatosensory area of the neocortex. The “mapping”

from the body part to the respective brain areas approxi-
mately preserves topography, that is, neighboring parts of
the body are represented in neighboring parts of the cor-
tex. For example, the left hand is represented lateralized on
the right hemisphere and the right hand almost symmetri-
cally on the left hemisphere. The temporal amplitude fluctu-
ations of these local rhythms reflect variable functional states
of the underlying neuronal cortical networks and can be used
for brain-computer interfacing. In particular, the pericen-
tral μ- and β-rhythms are diminished, or even almost com-
pletely blocked by movements of the corresponding body
part. Blocking effects are visible bilateral but with a clear pre-
dominance contralateral to the moved limb. This attenuation
of brain rhythms is termed event-related desynchronization
[15].

Since a focal ERD can be observed over the motor and/or
sensory cortex even when a subject is only imagining a move-
ment or sensation in the specific limb, this feature can be
used well for BCI control: the discrimination of the imag-
ination of movements of left hand versus right hand can
be based on the somatotopic arrangement of the attenua-
tion of the μ- and/or β-rhythms. Figure 2 shows the average
scalp spectra distribution of left hand versus right hand in
one trial. The μ- and/or β-rhythms appeared in both left-
and right-hand trials, it is difficult to distinguish them only
from frequency spectra of single trial; but they have differ-
ent characteristics of temporal amplitude fluctuations and
spatial distribution (see Figure 3). Therefore, more advanced
feature extraction methods should be developed to extract
the low diversification of ERD. The CSP algorithm is an ef-
fective way to improve the classification performance. There
still exists another type of features different from the ERD
reflecting imagined or intended movements, the movement-
related potentials (MRP), denoting a negative DC shift of the
EEG signals in the respective cortical regions. This combina-
tion strategy utilizes both temporal and spatial characteris-
tics of EEG data and is able to greatly enhance classification
performance in offline studies. In this paper, we focus only
on improving the ERD-based classification.

3. TEMPORAL INDEPENDENT COMPONENT ANALYSIS

Independent component analysis (ICA) has been accepted as
a standard data analysis tool in the neural network and sig-
nal processing societies. However, there still exist a number of
problems in dealing with real world data using ICA. In many
applications, the problem usually does not satisfy the basic
assumptions of ICA model. One typical application of ICA is
electroencephalographic (EEG) data analysis. EEG usually is
very noisy and its mixing model is time-variable. One chal-
lenging problem is to extract potential source from single-
trial EEG measurements in a very short time window. Still
another problem is that ICA generally extract spatial mutual
independent source, it did not consider the temporal struc-
tures of source signals and then lost the temporal informa-
tion. Based on that, we suggest to explore both the high-order
statistics and temporal structures of source signals. The main
idea is to analyze the mutual independence of the residual
signals.
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Figure 2: (a) Channels spectra and associated topographical during left-hand movement imagery. (b) Channels spectra and associated
topographical during right-hand movement imagery.
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Figure 3: Different temporal amplitude fluctuations and spatial distribution during left- and right-hand movement imagery. (a) A series of
3D scalp maps representing potential distributions at a selected series of time points during left-hand movement imagery. (b) A series of 3D
scalp maps representing potential distributions at a selected series of time points during right-hand movement imagery.

3.1. Formulation

Assume that s(k) = [s1(k), s2(k), . . . , sN (k)] are mutually spa-
tially independent source signals, of which each temporally
correlated with zero mean. Suppose that source si(k) is mod-
elled by a stationary AR model,

si(k) =
N∑

p=1

aipsi(k − p) + εi(k), (1)

where N is the degree of the AR model and εi(k) is zero-
mean, independently and identically distributed (i.e., white)
time series called the residual. For the sake of simplicity, we
use the notation Ai(z) = 1−∑N

p=1 a
i
pz
−p, z is the z-transform

variable. Since in the blind separation setting the source sig-
nals are unknown, we need to impose some constraints on
the linear filters. We assume that the linear filters Ai(z) are
minimum phase throughout this paper. Suppose that sensor
signals are instantaneous mixtures of the source signals. Let
x(k) = [x1(k), . . . , xn(k)]T be the set of linearly mixed sig-
nals,

x(k) = Hs(k). (2)

Here, H = (Hij) is an n × n unknown nonsingular mixing
matrix. Blind source separation problem is to find a linear

transform which transforms the sensor signals into maxi-
mally mutually independent components, which are consid-
ered as the estimates of source signals. Let W be an n×n non-
singular matrix which transforms the observed signals x(k)
to

y(k) = Wx(k). (3)

The general solution to the blind separation problem is to
find a matrix W such that WA = ΛP, where Λ ∈ Rn×n is a
nonsingular diagonal matrix and P ∈ Rn×n is a permutation
matrix.

3.2. Cost function

In this section, we introduce the mutual information of
residual signals as a criterion for training the demixing ma-
trix and temporal structure parameters. The residual inde-
pendent analysis provides us a new way to explore both the
temporal structures and high-order statistics of source sig-
nals. From the source model, we have ε(k) = A(z)s(k), where
A(z) can be estimated via the linear prediction method if the
source signals s(k) are known. When the temporal structure
A(z) and the demixing matrix W are not well estimated, the
residual signals

r(k) = (r1(k), . . . , rn(k)
)T = A(z)Wx(k) (4)
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are not mutually independent. Therefore, it provides us a
new criterion for training the demixing model and tempo-
ral structures to make the residuals r(k) spatially mutually
independent and temporally identically independently dis-
tributed.

Assume q(r) is the probability density function of r and
qi(ri) is the marginal probability density function of ri, i =
1, . . . ,n. Now we introduce the mutual information rate I(r)
between a set of stochastic processes r1, . . . , rn as

I(r) = −H(r) +
n∑

i=1

H
(
ri
)
, (5)

where H(ri) and H(r) are the entropies of random vari-
ables ri and r, respectively. For blind deconvolution problem,
Amari et al. [16] and Pham [17] simplify the first term of cost
function (5) and derive a cost function as follows:

l
(

W, A(z)
) = − 1

2π j

∮

r
log
∣∣det

(
A(z)W

)∣∣z−1dz

− 1
L

L∑

k=1

n∑

i=1

log qi
(
ri(k)

)
,

(6)

where j is the imaginary unit of complex numbers, and the
path integral is over the unit circle γ of the complex plane.
The first term of right side of (6) is introduced to prevent the
filter W from being singular. To simplify the cost function,
we calculate the first term of the right side of (6) as follows:

log
∣∣det

(
A(z)W

)∣∣ = log
∣∣det(W)

∣∣ + log
∣∣det

(
A(z)

)∣∣.
(7)

Because the temporal filters A(z) is causal and minimum
phase, we can easily verify

1
2π j

∮

γ
log
∣∣det

(
A(z)

)∣∣z−1dz = 0. (8)

Now combining equations (7), (8) with (6), we obtain a sim-
plified cost function for independent residual analysis

l
(

W, A(z)
) = − log

(∣∣det(W)
∣∣)− 1

L

L∑

k=1

n∑

i=1

log qi
(
ri(k)

)
.

(9)

Independent residual analysis can be formulated into the
semiparametric model [18]. The probability density function
q and the temporal filter A(z) are seen as the nuisance pa-
rameters in the semiparametric model. The demixing matrix
W is called as the parameters of interest. The semiparametric
approach suggests using an estimating function to estimate
the parameter of interest, regardless of the nuisance parame-
ters. We suggest to estimate the nuisance parameters in order
to have better separating performance of the algorithm.

3.3. Conjugate gradient algorithm

In this section, we derive a learning algorithm based on the
conjugate gradient descent approach for the demixing ma-
trix. We assume that the probability density functions and

the temporal filters are known for a moment during the
derivation of a learning algorithm for the demixing matrix.
To describe the conjugate gradient method for minimizing
cost function, we need first to calculate the natural gradient

∇l(W, A(z)
) =

(
− I +

1
L

L∑

k=1

N∑

p=0

Ap
[
ϕ
(

r(k)
)

yT(k − p)
]
)

W,

(10)

where ϕ(r) = (ϕ1(r1), . . . ,ϕn(rn))T is the vector of activation
functions, defined by ϕi(ri) = −q′i (ri)/qi(ri).

Given an initial value W0 and k = 1, the conjugate gradi-
ent algorithm starts out by searching in the steepest descent
direction (negative of the gradient) on the first iteration.

H0 = −∇l
(

W0, A(z)
)
. (11)

Now we perform one-dimensional search algorithm to find
the minimum point of the cost function l(W, A(z))

Wk = exp
(
t∗Hk−1W−1

k−1

)
Wk−1, t∗ = arg min

t
l
(

Wk−1(t)
)
,

(12)

along the geodesic: Wk−1(t) = exp(t∗Hk−1W−1
k−1)Wk−1. The

new search direction Hk is defined by the following equation:

Hk = −∇l
(

Wk
)

+ γkτHk−1, (13)

where τHk−1 is the parallel translation from Wk−1 to Wk, that
is,

τHk−1 = Hk−1W−1
k−1Wk. (14)

The value γk in (13) is evaluated by

τk =
〈

Gk − τGk−1, τGk
〉

〈
τGk−1, τGk−1

〉 . (15)

For the geometrical structures, such as the geodesic and
Riemannian metric of nonsingular matrices, refer to [19].
The conjugate gradient algorithm search the minimum point
along the geodesic which produces generally faster conver-
gence than steepest descent directions. Both theoretical anal-
ysis and computer stimulations show that the conjugate gra-
dient algorithm has much better learning performance than
the natural gradient does. Here we briefly introduce learn-
ing algorithms for adapting the nuisance parameters in the
semiparametric ICA model. By using the gradient descent
approach, we obtain the learning algorithm for the filter co-
efficients aik

Δaip(k) = −η′k
1
L

L∑

k=1

ϕi
{
ri(k)

}
yi(k − p), (16)

where η′k is the learning rate. For the detailed information
about activation function adaptation, refer to [20].
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Raw EEG signals

Preprocessing filtering
(8-30 Hz), eliminating artifacts(cICA)

Extracting data epochs by events types

Training IRA demixing matrix

Extracting temporal features by IRA

Extracting spatial features by CSP

Creating and selecting features vectors

Training and classifying single-trial EEG

Figure 4: Flowchart of single-trial classification process.

4. METHODS

Our procedure to classify the single-trial EEG evoked by
left- and right-hand movement imagery is summarized in
Figure 4. First, the multichannel EEG signals are prepro-
cessed by cICA method to remove artifacts and/or noise
(e.g., EOG). Next, frequency bands (8–30 Hz) are then ex-
tracted using band filters, because it mainly contains μ-
and β-rhythm in somatosensory area of the neocortex (see
Figure 1). In order to extract both temporal and spatial fea-
tures of event-related potential, we used combination of IRA
and CSP methods followed by a feature selection procedure
according to mutual information of each feature and events
labels. Finally, two pattern recognition methods of Support
Vector Machine (SVM) and linear discrimination analysis
(LDA) were carried out, respectively, to give classification re-
sults.

4.1. Data acquisition

Our purpose is to develop an online speller paradigm using
hand movement imagery EEG to select the letter according to
the user’s intention. In this paper, we only deal with the of-
fline analysis and test the classification performances of our
proposed method. In the experimental sessions used for the
present study, labeled trials of brain signals were recorded
in the following way: The subjects were seated in an arm-

A B C D E F

(a)

A B C D E F

(b)

Figure 5: Visual stimulation signals in the experiment paradigm (a)
At 3 second, an arrow appeared at the center of the monitor, point-
ing either to the right or to the left (b) After 4 seconds of imagina-
tion, cursor was moved to the next letter.

chair and looked at a computer monitor placed approxi-
mately 1.5 m in front at eye level. They were asked to keep
their arms and hands relaxed, and to avoid eye movements
during the recordings. Each trial started with the presenta-
tion of a row of letters at the center of the monitor with cur-
sor on one letter, followed by a short warning tone (“beep”)
at 2 second . At 3 second, an arrow appeared at the center of
the monitor, pointing either to the right or to the left (“cue”)
(Figure 5(a)). Depending on the direction of the arrow, the
subject was requested to imagine a movement of the right or
the left hand. After 4 seconds, the subject was asked to re-
lax by the “cue” of moving cursor to the next letter towards
the direction which the subject imagined (Figure 5(a)). Then
next trial began after relaxing for 2 seconds. The experiment
comprised six experimental runs of 60 trials in each (30 left
and 30 right trials). In the analysis, none of trials was re-
moved for noise.

EEG was recorded referentially from 64 electrodes placed
over central and related areas using NeuroScan ESI 128 sys-
tem at the center for Brain-like Computing and Machine In-
telligence, Shanghai Jiao Tong University. The reference elec-
trode was mounted on the left and right mastoids and the
grounding electrode on the forehead. The EEG was filtered in
a 0.5–200 Hz frequency band. Horizontal and vertical Elec-
trooculogram (HEOG,VEOG) were derived bipolarly using
four electrodes. All signals, including 64 channels EEG, EOG,
were sampled at 500 Hz. In this study, we use four subjects’
experiment data for analysis.

4.2. Artifact detection

EEG is often contaminated with ocular and other artifacts.
Many methods have been developed in the literature to re-
move (or attenuate) artifacts in the recordings. Temporally
constrained ICA (cICA) [21] can extract signals that are sta-
tistically independent, which are constrained to maximizing
the correlation with some reference signals. This constrain-
ing signal do not need to be a perfect match but it should be
enough to point the algorithm in the direction of a particular
IC spanning the measurement space.

We assume a set of k measured time series x(t) = [x1(t),
x2(t), . . . , xk(t)]T to be a linear combination of l unknown
and statistically independent sources s(t) = [s1, s2, . . . , sl]T
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(assuming l ≤ k). A common preprocessing step is to apply a
linear “whitening” transformation to the time series so that
they have unit variance and are uncorrelated. The cICA is
desired to extract a single source of interest and is known
as one-unit ICA methods. The natural information-theoretic
one-unit contrast function is the negentropy J(y):

J(y) = H
(

ygaus
)−H(y), (17)

where H(·) is the differential entropy and ygaus is a Gaussian
random variable with the same variance as the output signal
y. A more flexible and reliable approximation of negentropy
was introduced such that

J(y) ≈ ρ
[
E
{
G(y)

}− E
{
G(v)

}]2
, (18)

where ρ is a positive constant, v is a zero mean, unit vari-
ance Gaussian random variable, and G(·) can be any non-
quadratic function. The cICA algorithm brings in the use of
a constraint which is used to obtain an output which is statis-
tically independent from other sources and is closest to some
reference signal r(t). The closeness constraint can be written
as

g(w) = ε(w)− ξ ≤ 0, (19)

where w denotes a single demixing weight vector, such that
y = wTx; ε(w) represents the closeness between the esti-
mated output and the reference r, and ξ represents some
closeness threshold. The measure of closeness can take any
form, such as mean squared-error (MSE) or correlation, or
any other suitable closeness measure. In our implementation
of the algorithm, we use correlation as a measure of closeness
such that g(w) becomes

g(w) = ξ − E
{

r
(

wTx
)} ≤ 0, (20)

where ξ now becomes the threshold that defines the lower
bound of the optimum correlation. With the constraint in
place, the cICA problem is formulated as follows:

maximize f (w) = ρ
[
E
{

wTx
}− E

{
G(v)

}]2

Subject to g(w) ≤ 0;

h(w) = E
{

y2}− 1 = 0;

E
{

r2}− 1 = 0;

(21)

where f (w) denotes the one-unit ICA contrast function,
g(w) is the closeness constraint, h(w) constrains the output
y to have unit variance, and the reference signal r is also con-
strained to have unit variance. In [22], the problem of cICA
is expressed as a constrained optimization problem which is
solved through the use of an augmented Lagrangian func-
tion, where learning of the weights and Lagrange parameters
is achieved through a Newton-like learning process.

In the field of EEG analysis, it is feasible to assume
that some prior information on reference signals is avail-
able. In the case of artifact rejection in EEG, the morpholo-
gies and relative timings of contaminating eye-blinks or eye-
movements can easily be derived in an automated fashion.

The relative morphology of the reference is relatively unim-
portant as long as the temporal features of interest are cap-
tured; for example, the use of square “pulses” over the re-
gion of interest with a zero reference elsewhere should be rea-
sonable as a temporal constraint when looking for transients
such as eye blinks or other similar waveforms. We directly
use the channel EOG as a reference function r(t) to serve as
a temporal constraint in the cICA algorithm.

The one-unit cICA method employed for this paper ex-
tracts only the single component which is closest to the ref-
erence signal in certain sense. However, it is not necessary to
assume in advance the number of actual underlying sources,
and no manual selection of components is required. These
are two very important points for practical implementations
of ICA. Generally, the algorithm converges to the desired so-
lution within a small number of iterations and the exact mor-
phology of the reference signal is not too critical in obtain-
ing a plausible solution. This makes it possible for the algo-
rithm to be implemented as an online automatic artifact re-
jection system. After extracting single component which was
regraded as an artifact, we can get the reconstructed noise-
free EEG signals by the deflation procedure.

Before feature extraction, the EEG signals are filtered
in an 8–30 Hz band. The filter used is a zero-phase for-
ward/backward FIR filter with a width of 20 points. The fre-
quency band was chosen because it encompasses the alpha
and beta frequency bands, which have been shown to be most
important for movement classification [4]. Furthermore, in a
recent movement study, it was shown that a broad frequency
band (e.g., 8–30 Hz) gives better classification results com-
pared with narrow bands.

4.3. Feature extraction

The IRA is to find the independent source components which
also retain temporal structures. These source components
can be regarded as different source of neuron electricity and
some of them may be related to the motor imagery task. The
CSP method is to find a spatial filter according to class la-
bels which maximaize the distance of different class samples.
Therefore, theoretically using CSP on IRA components will
get better performance than using CSP on mixing signals of
EEG. First, we use IRA method to extract some components
which mainly contain noise-free EEG components of interest
that are of temporal structures. Then CSP will be performed
on the components of IRA.

4.3.1. Temporal feature extraction by IRA

Because the temporal structures of event-related potentials
may be more obvious after averaging all trials, the IRA was
chosen to analyze the averaged source signal obtained from
all EEG trials. After the IRA procedure, we obtained separat-
ing matrix and source signal sets (see Figure 6). The average-
imagined potentials were used for training the IRA demixing
matrix which would be used to project the single-trial EEG
to IRA bases. The averaged trial can be seen as combination
of trials and source components. The common demixing
weight matrix will be found by decomposition of averaged
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Figure 6: (a) Average 62 components during left-hand movement imagery. (b) Average 62 components during right-hand movement im-
agery.
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Figure 7: The scalp map projection of the IRA components in 3D
head model. Components 9 and 19 were highly related to the motor
imagery task, while components 1 and 2 were associated with the
occipital alpha rhythm.

trial. After finding the demixing matrix W , we will use it
for single-trial EEG. In this way, for each movement imagery
task, the set of sources signals s(k) became the features them-
selves.

According to IRA algorithm, the components are mutu-
ally independent, each column in the mixing matrix, repre-
sents a spatial map describing the relative projection weights
of the corresponding temporal components at each EEG
channel. These spatial maps will hereinafter be referred to
as IC spatial map. Figure 7 shows 30 IC spatial maps for 30
temporal independent components. In IRA maps, IC9 and
IC19 mainly cover left and right motor field of brain which
are highly related to the motor imagery task. Therefore, these

components can be regarded as source signals that are most
effective for classification, which are testified further by mu-
tual information in the Section 4.4.

4.3.2. Spatial feature extraction by common
spatial patterns (CSP)

The common spatial pattern (CSP) algorithm is very useful
when calculating spatial filters for detecting ERD effects [23]
and for ERD-based BCIs. Given two distributions in a high-
dimensional space, the (supervised) CSP algorithm finds di-
rections (i.e., spatial filters) that maximize variance for one
class and at the same time minimize variance for the other
class. After having band-pass filtered the EEG signals to the
rhythms of interest, high variance reflects a strong rhythm
and low variance reflects a weak (or attenuated) rhythm.

This criterion is exactly what the CSP algorithm opti-
mizes: maximizing variance for the class of right-hand tri-
als and at the same time minimizing variance for left-hand
trials. Moreover, a series of orthogonal filters of both types
can be determined. For the analysis, the raw EEG data of a
single trial is represented as an N × T matrix E, where N is
the number of channels (i.e., recording electrodes) and T is
the number of samples per channel. The normalized spatial
covariance of the EEG can be obtained from

C = EE′

trace(EE′)
, (22)

where E′ denotes the transpose of E and trace(x) is the sum of
the diagonal elements of x. For each of the two distributions
to be separated (i.e., left- and right-movement imagery), the
spatial covariance Cd∈[l,r] is calculated by averaging over the
trials of each group. The composite spatial covariance is given
as

Cc = Cl + Cr (23)
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Cc can be factored as Cc = UcλcU′
c, where Uc is the matrix

of eigenvectors and λc is the diagonal matrix of eigenvalues.
Note that throughout this section, the eigenvalues are as-
sumed to be sorted in descending order.

The whitening transformation

P =
√
λ−1
c U′

c (24)

equalizes the variances in the space spanned by Uc, that is,
all eigenvalues of PCcP′ are equal to one. If Cl and Cr are
transformed as

Sl = PClP′, Sr = PCrP′ (25)

then Sl and Sr share common eigenvectors, that is, if Sl =
BλlB′, then Sr = BλrB′ and λl +λr = I, where I is the identity
matrix. Since the sum of two corresponding eigenvalues is
always one, the eigenvector with largest eigenvalue for Sl has
the smallest eigenvalue for Sr and vice versa. This property
makes the eigenvectors B useful for classification of the two
distributions.

With the projection matrix W = B′P, the decomposition
(mapping) of a trial is given as

Z = WE. (26)

The columns of W−1 are the common spatial patterns and
can be seen as time-invariant EEG source distribution vec-
tors. The signals Zp(p = 1 · · · 2m) that maximize the differ-
ence of variance of left versus right-movement imagery EEG
are the ones that are associated with the largest eigenvalues λl
and λr . These signals are the m first and last rows of Z due to
the calculation of W.

4.3.3. Visualization

We examine the changes in performance of all trials using
a variety of measures and new ideas for visualization that
help us to characterize the type and degree of changes seen
in EEG features used for BCI classification. We used EEGLAB
software package which was an open source toolbox for data
visualization. Figure 8 shows components activity along tri-
als and power spectrum. Event-related spectral perturbations
(ERSPs) [24] gave each single-trial component activity time
series which was transformed to a baseline-normalized spec-
trographic image using a moving-window average of FFT
spectra computed. Intertrial coherence (ITC) is a frequency
domain measure of the partial or exact synchronization of
activity at a particular latency and frequency to a set of exper-
imental events to which EEG data trials are time locked. The
term “inter-trial coherence” refers to its interpretation as the
event-related phase coherence (ITPC) or event-related lin-
ear coherence (ITLC) between recorded EEG activity and an
event-phase indicator function. (See Figure 9.) From ERSP
and ITC of components 9 and 19, we found that compo-
nent 9 of left-hand events and right-hand events has different
time-frequency spectral. In left-hand events, featured brief
(20–25 Hz) appeared near the middle of the trial, by con-
trast, right-hand events appeared only near the beginning of
the trial. Furthermore, the components 19 of right-hand tri-
als has a little similar time-frequency changes as component
9 of left-hand trials.

4.4. Classification

The features used for classification are obtained by IRA and
CSP. For each direction-imagined movement, the variances
of feature signals suitable for discrimination are used for the
construction of the classifier. The feature should maximize
the difference of variance of left versus right movement im-
agery EEG.

fp = log

(
var
(
Zp
)

∑n
i=1 var

(
Zi
)
)

, (27)

where Zp(p = 1 · · ·n) are the CSP components. The feature
vectors fp are used for classification. The log-transformation
serves to approximate normal distribution of the data. In or-
der to view the performance of feature extraction methods,
we used PCA to reduce feature vectors’ dimensions and then
viewed ability of separating different classes in 2-D or 3-D
space (see Figure 10).

Because some of these features are not sensitive to dis-
criminate different types of single-trial EEG. In fact, there
are even irrelevant and redundant features in the feature set.
By selecting the relevant features before the classification, we
could not only simplify the classifier but also improve the
classification performance. The definition of relevant feature
is proposed by Blum and Langley [25]. The improved mu-
tual information feature selector (MIFS) algorithm [26] that
is chosen in our system for feature selection tries to maximize
I(C; fi | fs), and this can be rewritten as

I
(
C; fi, fs

) = I
(
C; fs

)
+ I
(
C; fi | fs

)
. (28)

Here I(C; fi | fs) represents the remaining mutual informa-
tion between class C and feature fi for given fs. For all the
candidate features to be selected in the ideal feature selection
algorithm, I(C; fs) is common and not necessary to evaluate
it. So the ideal greedy algorithm now tries to find the feature
that maximizes I(C; fi | fs) (area 3) in (28); but, in general,
to calculate I(C; fi | fs), we need to divide the input feature
space into lots of partitions and this is practically impossible.
So we will approximate I(C; fi | fs) with I( fs; fi) and I(C; fi),
which are relatively easy to calculate. The conditional mutual
information I(C; fi | fs) can be represented as

I
(
C; fi | fs

) = I
(
C; fi

)− {I( fs; fi
)− I

(
fs; fi | C

)}
. (29)

The term I( fs; fi | C) means the mutual information between
already selected feature fs and the candidate feature fi for
given class C. If conditioning by the class C does not change
the ratio of the entropy of fs and the mutual information be-
tween fs and fi, then the following relation holds:

I
(
fs; fi | C

) = H
(
fs | C

)

H
(
fs
) I

(
fs; fi

)
. (30)

Using the equation above and (29) together, we obtain

I
(
fi;C | fs

) = I
(
fi;C

)− I
(
fs;C

)

H
(
fs
) I
(
fs; fi

)
. (31)
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Figure 8: The properties of component which including scalp component map, component activity along trials and power spectrum. (a)
Component 9 during left-hand movement imagery. (b) Component 9 during right-hand movement imagery. (c) Component 19 during left-
hand movement imagery. (d) Component 19 during right-hand movement imagery. Though the similarity of power spectrum, the temporal
amplitude fluctuations of component 9 are obviously different during left- and right-hand movement imagery. In (b), the amplitude has
obviously attenuation for all trials while it did not appear in (a).

With this formula, the revised greedy selection algorithm is
depicted as follows.

(Greedy selection) repeat until desired number of fea-
tures are selected.

(a) (Computation of entropy) for all s ∈ S, compute H(s)
if it is not already available.

(b) (Computation of the MI between variables) for all
couples of variables ( f , s) with f ∈ F, s ∈ S compute
I( f ; s) if it is not already available.

(c) (Selection of the next feature) choose feature f ∈ F
as the one that maximizes I(C; f ) − β

∑
s∈S(I(C; s)/

H(s))I( f ; s); set F ← F{ f }, S← { f }.
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Figure 9: The event-related spectral perturbation (ERSP) shows mean event-related changes in spectral power at each time during the epoch
and at each frequency. Intertrial coherence (ITC) indicates degree of that the EEG activity at a given time and frequency in single trials are
phase-locked (not phase-random with respect to the time-locking experimental event). (a) ERSP and ITC of component 9 during left-hand
movement imagery. (b) ERSP and ITC of component 9 during right-hand movement imagery. (c) ERSP and ITC of component 19 during
left-hand movement imagery. (d) ERSP and ITC of component 19 during right-hand movement imagery.

Here the entropy H(s) can be computed in the process
of computing the mutual information with output class C,
so there is little change in computational load with respect
to MIFS. The variable β gives flexibility to the algorithm as
in MIFS. If we set β zero, the proposed algorithm chooses
features in the order of the mutual information with the out-
put. As β grows, it deselects the redundant features more ef-
ficiently. In general, we can set β = 1 in compliance with
(31). For all the experiments to be discussed later, we set it to
1. The estimation of mutual information (MI) between each
feature and event labels are showed in Figure 11. Based on
the algorithm, we obtain a subset of relevant features, which
possess the larger MI of all the features, for the classification
procedure. Figure 12 shows joint distribution of four features
with maximal mutual information.

Two classification methods of Support Vector Machine
(SVM) and linear discrimination analysis (LDA) were used
to validate the result. To evaluate the classification perfor-
mance, the generalization classification accuracy was esti-
mated by 10-fold cross-validation.

5. RESULTS AND DISCUSSIONS

Table 1 summarizes the results of single-trial EEG classifica-
tion for left- versus right-hand movement imagery. The first
row denotes the different classification method with differ-
ent number of features, the first column denotes different
feature extraction methods for the subjects. In the feature
extraction methods, temporal spatial pattern (TSP) repre-
sents the method of combining IRA and CSP which we have
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Figure 10: Data distribution of feature vectors in 2-D or 3-D views by using PCA method to reduce dimensions. (a)(d) Feature distribution
of two type events which extracted by IRA method. (b)(e) Feature distribution of two type events which extracted by CSP method. (c)(f)
Feature distribution of two type events which extracted by our method.
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Figure 11: (a) The mutual information of IRA components and events labels. (b) The mutual information of CSP components and events
labels.
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Figure 12: (a) The joint distribution of four features with maximal mutual information between features and events types during left-hand
movement imagery. (b) The joint distribution of four features with maximal mutual information between features and events types during
right-hand movement imagery.

Table 1: Classification rates (%) for four subjects with different methods. Denoting temporal spatial pattern (TSP) as method which using
both temporal and spatial structure information implemented by IRA and CSP algorithms. The first row denotes different classification
method with different number of features and the first column denotes different feature extraction methods for the subjects.

LDA(4) SVM(4) LDA(10) SVM(10) LDA(16) SVM(16) LDA(24) SVM(24) LDA(30) SVM(30)

Subject A

CSP (no filtering) 71.23 72.78 81.50 82.06 87.14 87.86 87.14 87.86 88.90 89.88

ICA (no filtering) 77.43 77.10 76.69 76.81 76.17 75.94 74.91 74.49 74.17 74.49

TSP (no filtering) 76.55 77.13 87.94 89.01 91.83 92.49 90.02 91.04 90.02 91.04

CSP ([8–30 Hz]) 85.48 86.67 87.82 88.69 88.26 88.41 90.96 90.72 91.86 91.88

ICA ([8–30 Hz]) 86.85 87.53 86.05 87.53 85.51 86.95 84.06 86.37 83.37 86.95

TSP ([8–30 Hz]) 85.56 86.09 85.90 87.24 89.49 89.56 91.96 92.46 93.56 93.90

Subject B

CSP ([8–30 Hz]) 65.37 65.66 84.15 85.66 85.86 87.66 90.91 90.33 91.58 92.00

ICA ([8–30 Hz]) 85.41 85.33 87.44 87.00 85.97 86.33 86.51 85.66 86.21 86.67

TSP ([8–30 Hz]) 76.66 77.33 86.00 86.00 89.00 89.00 92.33 92.33 92.67 94.00

Subject C

CSP ([8–30 Hz]) 71.03 72.67 74.70 76.00 79.77 80.67 84.32 86.33 85.25 86.33

ICA ([8–30 Hz]) 79.92 80.00 81.42 80.33 79.93 79.67 78.29 78.33 78.04 79.00

TSP ([8–30 Hz]) 79.03 80.66 80.90 80.33 86.37 85.00 88.63 88.00 88.14 88.00

Subject D

CSP ([8–30 Hz]) 71.89 72.33 82.68 84.00 83.55 83.66 87.82 87.66 86.31 88.00

ICA ([8–30 Hz]) 72.63 73.33 74.47 76.00 73.65 76.00 75.31 75.66 75.70 76.00

TSP ([8–30 Hz]) 78.01 77.00 84.52 85.00 84.51 84.33 88.27 88.33 88.72 88.66

proposed in this paper. In the table, ICA results are com-
puted by infomax ICA technique through decomposing the
data into 62 components and then selecting different num-
ber of features based on mutual information method. From
the table, we can see that CSP algorithm is sensitive for the
frequency (i.e., frequency-specific). ICA results have no ob-
vious improvement with increasing number of features. We
also see clearly that the TSP method improves the accuracy
of classification. Without applying filtering on EEG signals,

TSP method always get better results than the CSP algorithm.
Furthermore, Figure 13 shows the curves of classification rate
according to number of features. The most optimal result can
be obtained by the TSP method and the accuracy is about
93.9% for subject A, 95% for subject B, 92.33% for subject
C, and 91.3% for subject D. In the Graz BCI system, subjects
were asked to perform the actual finger movement at 8 sec-
ond and the system also has the feedback to subjects at 1 sec-
ond after the movement according to the estimate of DSLVQ
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Figure 13: The classification accuracy versus the number of features for CSP, ICA and TSP (combination of IRA and CSP) methods. (a)
Subject A. (b) Subject B. (c) Subject C. (d) Subject D.

classifier. However, in our system, the subject only was asked
to imagine hand movement but none of actual movement
and feedback were performed. In fact, the actual movement
will improve the classification rate greatly. Moreover, there
is no preselection for artifact trials in our system. Therefore,
TSP can provide better features for EEG classification during
hand movement imagery and is more suitable for the online
BCI system.

The results can be summarized as follows.

(1) TSP method (combination of IRA and CSP) can gen-
erally increase the classification accuracy of the EEG
patterns.

(2) CSP is very sensitive to frequency of filtering and is
severely subject-specific, while TSP will get better clas-
sification rate when dealing with original EEG signals.

(3) Temporal features of single-trial EEG which reflects
event-related potentials can be used to classify move-
ment imagery tasks.

(4) Interrelated feature analysis based on mutual informa-
tion may improve the EEG classification rate.

6. CONCLUSIONS

Single-trial EEG classification is a very difficult and challeng-
ing problem in BCI. How to extract effective information or
features from original EEG signals becomes a central prob-
lem of the EEG-based BCI. In the past BCI research, CSP al-
gorithm has been proven to be very successful in determin-
ing spatial filters which extract discriminative brain rhythms.
However, the performance can suffer from nondiscrimina-
tive brain rhythms with an overlapping frequency range.
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Meanwhile, IRA algorithm successfully overcomes this prob-
lem by finding the latency source related to events. Through
IRA decomposition, we will separate useful source compo-
nents with temporal structures from noise. Therefore, it will
overcome the problem of losing temporal information that is
very useful for classification of event-related potential. Fur-
thermore, through feature selection based on mutual infor-
mation, most interrelated or effective features have been se-
lected for classification. It allows to clearly reveal discrimi-
nating parts in features set, thus contributes to a better un-
derstanding of mechanism for an imagination task. Finally,
it would be useful to explore configurations with more than
two classes which are more natural and also more friendly
from the psychological perspective.
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