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Abstract

Topographic and overcomplete representations of natural images/videos are important problems in computational neuroscience. We
propose a new method using both topographic and overcomplete representations of natural images, showing emergence of properties

similar to those of complex cells in primary visual cortex (V1). This method can be considered as an extension of model in Hyvärinen
et al. [Topographic independent component analysis, Neural Comput. 13 (7) (2001) 1527–1558], which uses complete topographic
representation. We utilize a sparse and approximately uncorrelated decompositions and define a topographic structure on coefficients

(the dot products between basis vectors and whitened observed data vectors). The overcomplete topographic basis vectors can be learned
via estimation of independent component analysis (ICA) model based on the prior assumption upon basis vectors. Computer simulations
are provided to show the relationship between our model and the basic properties of complex cells in V1 cortex. The learned bases are
shown to have better coding efficiency than ordinary topographic ICA (TICA) bases.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, linear approaches of the efficient coding
hypothesis [2] have provided functional explanations for
properties of simple cells in V1. Independent component
analysis (ICA) [4,10,1,3,21] turned out to be equivalent to
sparse coding [17], which can predict the localized,
oriented, and band-pass characteristics of simple cells. It
is a statistical generative model, which can approximate the
statistics of natural image patches as follows:

x ¼ As ¼
Xn

i¼1

aisi, (1)

where x ¼ ðx1; x2; . . . ; xmÞ
T is a vector of observed data,

s ¼ ðs1; s2; . . . ; snÞ
T is a vector of basis coefficients or

components, and A is a mixing matrix. The columns of A
are often called basis functions or basis vectors. In ICA, the
goal is to find a linear decomposition of natural data so
that the components are maximally statistically indepen-
dent. However, many types of natural data, particularly
e front matter r 2008 Elsevier B.V. All rights reserved.
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natural images, do not satisfy the basic independent
assumption of ICA method. Therefore, it is important
and interesting to further reveal the higher-order structures
in natural data, which are not captured by the ordinary
ICA model. Some recent approaches, such as topographic
ICA (TICA), have been proposed to extend the ICA model
to learn higher-order visual structures of the natural data
by capturing nonlinear dependencies after the ICA step
[7,8,13,18,20].
Topographic organization was first observed in experi-

ments in the primary cortex [6]. This cortical property was
explained by TICA model [8]. In this model, the basis
vectors with strong higher-order correlations are rear-
ranged to be near to each other. This model shows
emergence of properties similar to those of complex cells
in V1. However, as a result of the inherent constraint of the
model, TICA is suitable for complete representation of
natural images, but not for overcomplete representation
(i.e., the number of components is greater than the number
of observed data). The inherent constraint is the orthogon-
ality condition of the weight matrix W while approxi-
mating the likelihood, which means that the dimension
of the sources cannot exceed the dimension of the data
(i.e., npm).
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On the other hand, several approaches for the over-
complete representation have been proposed recently
[17,15,16,9]. Nevertheless, most of the overcomplete bases
obtained by these methods are not topographic representa-
tion but ordinary ICA Gabor-like basis, which is similar to
simple cells in V1. In this paper, we are interested in
investigating whether we can achieve both topographic and
overcomplete representations for natural images.

In this paper, we propose an overcomplete TICA model
based on maximum a posteriori (MAP) and topographic
representation. For considering the overcomplete case, a
quasi-orthogonal prior probability of the mixing matrix is
applied. Instead of examining the properties of components
as in ordinary TICA model, we define a topography on a
new variable ‘‘element’’, and provide a simple form of
probability density approximation of the element. Our
proposed model yields overcomplete representations while
ordinary ICA and TICA model only produces complete
representations for natural data. Overcomplete representa-
tions provide more efficient representations than the
complete case, and have been widely used in fields of
computational perception and pattern recognition [15].
The coding efficiency between overcomplete TICA and
ordinary is compared by computing the probability of
the data given learned bases. Our model provides an
improved statistic model with overcomplete topographic
representation for natural images and it is promising in a
wide range of fields, such as signal processing and pattern
recognition.

This paper is organized as follows. First, the over-
complete TICA method is described in detail in Section 2.
Some experimental results are given in Section 3. Finally,
conclusions and discussions are drawn in Section 4.

2. Model

In this section, we propose a MAP method that can yield
topographic bases for overcomplete sparse representation
of natural images. We introduce a new variable called
elements to approximate the internal state of representa-
tions. By defining a higher-order topographic structure on
each element, we can approximate marginal density of the
elements. The probability of mixing matrix can be derived
based on the quasi-orthogonality of basis vectors in a high-
dimensional space. Given whitened data vector, the
posterior probability for mixing matrix can be obtained
by Bayesian method. Then the overcomplete topographic
basis vectors can be estimated by maximizing this posterior
probability of mixing matrix.

First, in order to introduce the new variable element, it is
assume that the norms of basis vectors are set to unity and
the data are prewhitened by a preprocessing step as in most
ICA methods. We define element as the dot product
between the ith basis vector and the whitened data vector:

yi ¼ aTi z ¼ aTi As ¼ si þ
X
jai

aTi ajsj, (2)
where z is the whitened data vector, si is the ith
independent component and the second term is approxi-
mately Gaussian. In feature extraction for many types of
natural signal, the ICA model is usually to explore the
linear independency of components. The basic ICA method
provides a rather arbitrary set of components which are
maximually mutually independent. Thus, we can define
sparse marginal distributions on these elements, similar to
defining the sparseness on the components as in most ICA
method. Therefore, any good estimator of the mixing
matrix should maximize the nonGaussianity of these dot
products.
Furthermore, the element vector can be described by

mixing matrix and whitened data as: y ¼ ðy1; . . . ; ynÞ
T
¼

ATz. Therefore, the probability for z given A can be
approximated as follows:

pðzðtÞjAÞ ¼ pðyÞ � C
Yn

i¼1

pyi
ðyiÞ, (3)

where C is a constant. Obviously, the accuracy of the prior
probability pyi

is important, especially for overcomplete
representations [15]. Better approximation of the prior of
the elements would allow the model to capture structures
in images better. Schwartz and Simoncelli have observed
that, for natural images, there are significant statistical
dependencies among the variances of filter outputs [19].
According to this observations, we explore the energy
correlations of each element. As in ordinary TICA model,
we construct a two-layer neural network. Now the response
of simple cell is element yi instead of component si. The
simple cells are assumed to be arranged in a two-dimen-
sional grid and the responses of simple cells are not
mutually independent. Instead, the nearby simple cells have
energy correlations. The topography is formally described
by a neighborhood function hði; jÞ with indices i and j in a
two-dimensional grid. Typically, if the cells are close
enough to each other, hði; jÞ is denoted to 1. Otherwise it
is assigned to 0. The second layer is composed of complex
cells, which pool outputs of simple cells that are nearby on
the two-dimensional grid.
To specify the model for the topography and the sparseness

of elements, we define the probability of element as follows:

p̂yi
ðyiÞ ¼ exp G

X
j

hði; jÞy2
j

 ! !
, (4)

where the function GðyÞ should be convex for nonnegative
y. For example, one can use this form

GðyÞ ¼ �a
ffiffiffi
y
p
þ b. (5)

Thus, combining Eqs. (3) and (4), leads to an approxima-
tion of the probability for z given A as follows:

pðzðtÞjAÞ � C
Yn

i¼1

exp G
X

j

hði; jÞy2
j

 ! !
. (6)

On the other hand, it is observed that, in a very high-
dimensional space, the vectors are most likely orthogonal,
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which is a somewhat counterintuitive phenomenon. In
other words, the number of almost orthogonal directions is
much larger than that of orthogonal directions. This
property is called quasi-orthogonality [9,5,11,12,14]. There-
fore, in a high-dimensional space even vectors having
random directions might be sufficiently close to orthogon-
ality. Based on this observation, any good estimator of
mixing matrix should make different basis vectors tend to
be quasi-orthogonal. In this paper, we use the prior
probability of mixing matrix A proposed in [9], which is
derived from the quasi-orthogonality of random vectors in
a high-dimensional space. It is assumed that the dot
product aTi aj between basis vectors aTi and aj are randomly
and independently drawn in a high-dimensional space, then
the prior probability of mixing matrix A is derived as
follows:

pðAÞ ¼ cm

Y
ioj

ð1� ðaTi ajÞ
2
Þ
m�3=2, (7)

where the constant cm ¼ ðm� 1Þ=mG½m=2� 1�=
ffiffiffi
p
p

G½m=2þ
1�. The detailed derivation can be obtained in [9].

Then the posterior probability for the mixing matrix
given whitened data vector can be obtained by the
Bayesian method:

pðAjzÞ ¼
pðzjAÞpðAÞ

pðzÞ
, (8)

where pðzÞ does not depends on A. pðAÞ assigns a higher
probability to quasi-orthogonal matrices, since the basis
vectors are in a high-dimensional space (m43). And the
probability for z under the model pðzjAÞ holds both
topography of energy correlations and sparseness. Finally,
we obtain the following approximation of the log-
probability of the posterior for T observations zðtÞ; t ¼
1; . . . ;T as follows:

log pðAjzðtÞ; t ¼ 1; . . . ;TÞ

�
XT

t¼1

Xn

i¼1

G
X

j

hði; jÞy2
j

 !

þ aT
X
ioj

logð1� ðaTi ajÞ
2
Þ þ const:; (9)

where a is a constant that is related not only to cm, but also
to the approximations we have made.

Then, maximizing this log-probability of the posterior
over basis vector ak using gradient ascent method yields the
following learning rule:

Dak / Z
XT

t¼1

zðtÞðaTk zðtÞÞ
X

j

hðk; jÞ

 
g
X

i

hði; jÞðaTi zðtÞÞ
2

 !

þaT
X
ioj

�2aTi aj

1� ðaTi ajÞ
2
bk

!
, (10)

where Z is the learning rate. bk is the kth column vector of
matrix B ¼ ½0; . . . ; aj ; . . . ; ai; . . . ; 0�, aj is the ith column
vector, and ai is the jth column vector. The function g is the
derivative of G. In each iteration after updating ak

using learning rule (10), the norm of the basis vector ak

needs to be set to unity. This is different from ordinary
TICA algorithm, which needs to set the filter wi to be
orthonormalized.

3. Simulations

To estimate the overcomplete basis functions, we use
small patches taken from digital natural images of standard
sets available on the internet from Hyvärinen1 and
Olshausen.2 The results obtained from these two different
image sets are not significantly different. The training data
of 30,000 samples are generated by extracting 16� 16 small
patches at random positions from natural images, skipping
over any patches within 8 pixels of the borders of each
image. The patches are subsequently normalized such that
mean pixel intensity for a given pixel across the samples is
zero, and the DC component of each patch is also
removed. After the dimension is reduced from 256 to 100
(i.e., projected onto the leading 100 eigenvectors of the
covariance matrix), the data vectors are whitened to have
unit variance. These data preprocessing can speed up
training without imposing much impact on the final results
obtained. The exact form of the scalar function G, which
plays a similar role as the log-density of ICs in classic ICA,
does not affect the estimator, as long as the overall shape is
correct. Maximizing log likelihood method is used to
estimate A by an ordinary gradient method. Note that
there is no constraint of orthogonality during each
iteration other than the norms of basis vectors are set to
unity.
We train our model on overcomplete settings. The basis

is set to 2� and 4� overcompleteness, i.e., the dimension of
components is 200 and 400, respectively. In addition, the
constant a is set to 0.04 and 0.02, respectively. Learned
basis vectors are shown in Figs. 1(a) and 2. The 2� and 4�
overcomplete basis are quite well estimated, though a few
basis vectors are a bit messy. With notable similarity to
experimentally observed cortical topography, one can
observe pinwheel singularities in the organization map. It
can be seen that the locations of two neighboring basis
vectors are near to each other and their orientation and
frequency tend to be similar as well. However, their phases
are very different.
The approximation of basis vectors is investigated in

more detail by performing with different sizes of neighbor-
hoods. For the sake of avoiding border effects, the two-
dimensional torus lattice is chosen. The learned basis
vectors in 2� overcomplete case and neighborhoods of 5�
5 are shown in Fig. 1(b). It can be seen that different sizes
of neighborhoods bring somewhat different topographic
organization of basis vectors. The basis vectors with a
larger neighborhood yield more elongated Gabor shape

http://www.cis.hut.fi/projects/ica/data/images/
http://redwood.berkeley.edu/bruno/sparsenet/
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Fig. 1. The estimated basis vectors of 2� overcompleteness with two neighborhood sizes. The dimension of components is 200 and 400, respectively.

(a) Neighborhood size 3� 3. (b) Neighborhood size 5� 5.

Fig. 2. The estimated basis vectors of 4� overcompleteness with

neighborhood size 3� 3.
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and the topographic organization is more strongly affected
by the orientation.

We analyze in more detail the properties of basis vectors
by fitting a Gabor function to each basis vector (using the
least squares procedure). Fig. 3 shows the distribution of
parameters obtained by fitting Gabor functions to com-
plete, 2� and 4� overcomplete basis vectors. It can be seen
that the orientation is quite independent of frequency.
With the increasing of the level of overcompleteness, the
scattering points in the plot of location, spatial frequency
and orientation become denser and more uniform. And the
distribution of phase becomes more uniform for over-
complete cases.

We also examine the local parameter correlations
and population properties in terms of Gabor parameters,
including spatial position, orientation, frequency, and
phase. Fig. 4 shows the scatterplots of each pair of two
nearby basis vectors for one single parameter with 4�
overcompleteness. One can observe that the location,
orientation, and frequency of two nearby basis vectors
are strongly correlated, while the phases are not correlated.
They are random points in the phase plane.
Fig. 5 shows the population maps of fitted Gabor para-

meters with 4� overcompleteness for the same parameter.
As for orientation map, one can observe gradual changes
of color from red to blue, which represent the changes of
orientation. Especially, the pinwheels structure is observed
for overcomplete cases. From the frequency map, one can
find the spot of low-frequency basis, which can also be
observed in Fig. 2. In the phase map, one can see that the
distribution of phases is random indicating there is no
phase structure in the basis vectors in this model. It is
closely related to complex cells in V1 in that it is based on
location, frequency, and orientation and independent of
phase.
In order to examine the quasi-orthogonality of the

learned basis vectors, we calculate the minimum angle
between each basis vector and the rest basis vectors in the
whitened space. If this minimum angle is close to 901, the
given basis vector is said to be quasi-orthogonal to the rest
basis vectors. The minimum angles can be calculated as
follows: take the absolute value of matrix ATA, and set its
diagonal elements to be zero. Then, the arccos value of the
maximum of each column vector of this absolute value
matrix is the minimum angle. The minimum angles derived
from ordinary TICA and our overcomplete TICA in 2�
and 4� overcomplete case are shown in Fig. 6. We can
see that all the angles derived from TICA model are 901 for
its orthogonality conditions. Whereas, all the minimum
angles derive from our model are above 60�, which
demonstrates good quasi-orthogonality. This is consistent
with the relaxation of orthogonality conditions in a high-
dimensional space.
We also compare coding efficiency of the basis functions

learned by ordinary TICA and our OTICA method. I this
paper, the estimating method of coding length in [16] is
used to estimate the coding efficiency. The objective
function PðxjAÞ for the probability of the data is a natural
measure for estimating coding cost. For noiseless model,
the number of bits required to encode the pattern is
given by

] bitsX� log2 PðxjAÞ. (11)
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Fig. 3. The distributions of some parameters derived by fitting Gabor function. The leftmost column is a complete case, the middle column is 2�

overcomplete case and the rightmost column is 4� overcomplete case. (a) Joint distribution of orientation and spatial frequency (plotted in the upper-half

plane). (b) Center location within a patch. (c) Histogram of phase (mapped to range 0–90�).

Fig. 4. Distributions of pairs of two adjacent basis vectors. Gabor parameters: (a) location; (b) orientation; (c) frequency; and (d) phase with 4�

overcompleteness.
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Fig. 5. Population maps of Gabor parameters: (a) orientation; (b) frequency; and (c) phase with 4� overcompleteness.
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Fig. 6. The minimum angles between the learned basis vectors. (a) Complete case derived from TICA model. (b and c) 2� and 4� overcomplete case

derived from our OTICA model.

Table 1

Estimated coding length using PðxjAÞ

Method Coding length

TICA with complete bases 26.9970.43

OTICA with complete bases 15.2070.22

OTICA with 2� overcomplete bases 7.1770.11

OTICA with 4� overcomplete bases 5.4170.09

L. Ma, L. Zhang / Neurocomputing 71 (2008) 2217–22232222
The estimated coding costs are calculated from 100 sets of
1000 randomly sampled 16� 16 patches of natural images.
Table 1 shows the estimated coding cost of TICA and
OTICA model. We can see that our overcomplete TICA
method provides significantly efficient representations.
4. Conclusion

We introduce a new generative model based on a quasi-
orthogonal prior on the basis vectors for estimating
overcomplete topographic basis in a high-dimensional
space. It is an extension of TICA method proposed by
Hyvärinen [8], which provides a complete basis of natural
images. Our proposed model is able to provide an
overcomplete topographic representation by examining
the properties of dot products between basis vectors and
whitened data vectors and maximizing the nonGaussianity
and quasi-orthogonality of these dot products.

Our method is different from ordinary TICA and
ordinary overcomplete ICA in several ways. First, we
examine the properties of dot products between basis
vectors and whitened data vectors in a high-dimensional
space. Second, instead of examining the components, we
define a topographic order for the elements and employ a
simple form of probability density approximation of
elements with an energy of the neighborhood term. And
the mixing matrix A can be directly estimated by
maximizing the log-probability for posterior of the mixing
matrix given whitened data. Finally, we need not impose
the orthogonal constraint on the mixing matrix besides the
unity normalization of basis functions in each iteration.
Thus maximizing the log-probability for posterior of
mixing matrix given whitened data, we can estimate
different levels of overcomplete topographic basis vectors.
An important aspect of our model is the definition of a

new variable ‘‘element’’ to avoid the orthogonal constraint
on the mixing matrix. The main advantage is that, by
introducing element, we do not need to estimate the com-
ponent si in every step, as in most algorithms. Further-
more, each element can be decomposed into the sum of the
component and the effects of nearby components in two-
dimensional topography. And the weighted summation of
nearby components is approximately Gaussian. Therefore,
we can use this element to estimate the bases of the model.
The element can be seen as the response of simple cell
including the effects of nearby simple cells.
Simulations on natural image data show that our

proposed overcomplete TICA produces a Gabor-like linear
basis vectors and shows simultaneous emergence of
complex cell properties including location, frequency,
orientation, and phase. The results of coding efficiency
experiments demonstrate that the overcomplete TICA
model provides much more efficient representations than
ordinary TICA method. It is promising in a wide range of
fields, such as signal processing and pattern recognition.
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