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In this paper, a tensor-based scheme is introduced for single trial electroencephalogram (EEG) classifica-
tion in brain computer interfacing (BCI). Firstly, EEG signals are represented as third order tensors in the
spatial–spectral–temporal domain by wavelet transform. Then, a regularized tensor discriminant analysis
(RTDA) algorithm is proposed for a multi-way discriminative subspace extraction from tensor-repre-
sented EEG data. Unlike the conventional wavelet transform method, the proposed scheme includes
the structural information in multi-channel time-varying EEG spectrums endorsed by tensor representa-
tion, and improves the performance for EEG classification. Compared with the common spatial pattern
(CSP, the most successful algorithm in BCI) in the applications to two classes of datasets, the proposed
scheme has the following advantages: (1) an optimal multi-way discriminative subspace can be
extracted, obtaining significant spatial–spectral–temporal patterns for EEG classification; (2) the pro-
posed scheme can identify discriminative characteristics robustly, and works well without prior neuro-
physiologic knowledge. This is a valuable property for developing new paradigms in BCI whose
discriminative neural correlates are not known and (3) the proposed scheme is able to find the most sig-
nificant channels for classification, and can be applied to channel selection in BCI. Computer simulations
show that the number of used channels can be reduced to 2 in two datasets with very little loss in per-
formance. Therefore, it has great potential for the practical application of BCI.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Brain computer interface (BCI) is a system that is designed to
translate a subject’s brain activities into sequences of commands
for the computer. BCI provides a potentially powerful new commu-
nication channel for people to mentally control machines, and is
valuable for those with severe motor disabilities. The most popular
sensory signal used for BCI is the scalp-recorded electroencephalo-
gram (EEG), because it is a noninvasive measurement of brain
electrical activities and has a temporal resolution of milliseconds
(Millán et al., 2004; Wolpaw et al., 2002). The fundamental of
EEG based BCI is to detect changes of brain electrical activities in
different mental states and utilize classification of EEG signals to
transmit information (Blankertz et al., 2002; Wolpaw et al., 2000;
Lotte et al., 2007). Therefore, the effectiveness and efficiency of
the BCI based communication critically depend on extracting dis-
criminative features from the recorded single trial EEG in different
mental states.

The most commonly used mental control strategy in BCI is the
motor imagery (Grosse-Wentrup et al., 2007; Guger et al., 2000;
Song et al., 2006b; Song et al., 2006a), because it can be associated
ll rights reserved.
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with an enhancement (event-related synchronization, ERS) and
suppression (event-related desynchronization, ERD) of brain
rhythmic activity within specific frequency band over centro-pari-
etal lobes (Pfurtscheller and Neuper, 1997). The most successful
algorithm in this context, evidenced by the 2003 BCI Competition
(Blanchard and Blankertz, 2004), is termed as common spatial pat-
terns (CSP) (Ramoser et al., 2000). CSP is a decomposition method
proposed by Koles (1991) that finds a set of spatial patterns that
simultaneously diagonalize the covariance matrices corresponding
to two classes of data, and then the eigenvectors with the largest
and smallest eigenvalues correspond to the patterns with the max-
imum ratio of power between the two classes. For the classification
of two types of motor imageries, CSP can achieve the accuracy
above 90% on single trial EEG measurements (Ramoser et al., 2000).

Although the CSP algorithm proves to be highly successful for
the motor imagery paradigm, it is not optimized for the EEG clas-
sification problem. There are three major drawbacks. Firstly, the
selection of ‘‘good” CSP spatial patterns is done somewhat arbi-
trarily. A widely used heuristic is to choose several generalized
eigenvectors from both ends of the spectrum. CSP is rather a
decomposition technique than a classification technique (Koles,
1991), it is often observed that patterns corresponding to over-
whelming strong power come to the top of the eigenvalue spec-
trum though they are not correlated to the class label so strongly
(Tomioka et al., 2007). In fact, we cannot obtain an optimal pattern
t analysis for single trial EEG classification in BCI. Pattern Recognition Lett.
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for discrimination and the best classification accuracy of CSP is
usually based on a combination of several patterns. Secondly, the
performance of CSP severely depends on the preprocessing proce-
dure of the temporal filtering, because CSP detects the changes of
rhythmic activities based on the variances of signals. Only having
the EEG signals bandpass filtered through the frequency domain
of interest, high or low signal variances could reflect a strong or
weak (attenuated) rhythmic activity respectively (Lemm et al.,
2005). For improvements of the information rate and robustness
of BCI, developing new paradigms in BCI is necessary (Lal et al.,
2004). However, if the spectral characteristics in new paradigms
are not well known in advance as in the motor imagery task, CSP
does not work well. Finally, simultaneous diagonalization of
covariance matrices makes CSP prone to overfitting, which is a typ-
ical problem especially when the number of channels is large, and
when the number of available trials is small (Farquhar et al., 2006).
In the extracted patterns of CSP, the most significant channels for
classification are often masked by the channels unrelated to dis-
crimination. Additionally, this drawback makes CSP require a large
number of channels to be applied, whereas the practical BCI is ex-
pected to be implemented with a small number of channels. There-
fore, it is demanding to design a powerful discriminative feature
extraction method for single trial EEG classification.

In this paper, a tensor-based scheme is introduced for single
trial EEG classification. EEG signals are represented as third order
tensors in the spatial–spectral–temporal domain by wavelet trans-
form, and then a regularized tensor discriminant analysis (RTDA)
algorithm is proposed for a multi-way discriminative subspace
extraction from tensor-represented EEG data. Different from other
tensor models applied in the analysis of EEG signals recently, e.g.,
PARAFAC (Harshman, 1970; Martınez-Montes et al., 2004), Tucker
model, and non-negative multi-way/ tensor factorization (NMWF/
NTF) (Mørup et al., 2006a; Mørup et al., 2006; Lee et al., 2007),
RTDA uses the class label information and certain regularity con-
straints on the EEG signal factorization in order to find a robust dis-
criminative subspace. The high data dimensionality of EEG often
lead to overfitting in discriminative feature extraction. In order
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to improve generalization capability, RTDA takes the reasonable
assumptions about EEG signals to impose regularization terms on
each mode of the discriminative subspace: Sparseness terms are
imposed on the spatial and spectral patterns to force the discrim-
inative features to be based on a small number of channels and
frequency bands, since sparse coding can find succinct representa-
tions and is believed to be a very useful approach in the analysis of
EEG signals (Li et al., 2006). And because EEG signals are acquired
in continuous recording, a smoothness term is applied on the tem-
poral pattern to ensure that neighboring samples in time do not
vary drastically.

Compared with the CSP algorithm in the applications to two
classes of datasets, the proposed scheme has the following advan-
tages: (1) an optimal multi-way discriminative subspace can be ex-
tracted, obtaining significant spatial–spectral–temporal patterns
for EEG classification; (2) the proposed scheme can identify dis-
criminative characteristics robustly, and works well without prior
neurophysiologic knowledge. This is a valuable property for devel-
oping new paradigms in BCI whose discriminative neural corre-
lates are not known and (3) the proposed scheme is able to find
the most significant channels for classification, and can be applied
to channel selection in BCI effectively. Computer simulations show
that the number of used channels can be reduced to 2 in two data-
sets with very little loss in performance. Therefore, it has great po-
tential for the practical application of BCI.
2. Methods

In this section, the tensor-based scheme for single trial EEG
classification is introduced. Then the tensor representation of
EEG data and RTDA algorithm are briefly described.
2.1. The tensor-based scheme

As illustrated in Fig. 1, the proposed scheme mainly contains
four components: first, EEG signals acquired by an ESI-128 Channel
Multi-way EEG Data 

SVM 
Model

Testing Dataset 
Subspace Projection

odel
ng

Projection 
Feature
Vectors

Fr
eq

ue
nc

y

Time

0     20 40Hz

0 
 0

.5
  1

0         2000ms

0 
 0

.5
  1

ace
A 
t

Channel

Time

Discriminative Subspace

Frequencyel

d for the procedure during the training stage, and the red ones stand for the testing
r is referred to the web version of this article.)

t analysis for single trial EEG classification in BCI. Pattern Recognition Lett.

http://dx.doi.org/10.1016/j.patrec.2009.11.012


J. Li, L. Zhang / Pattern Recognition Letters xxx (2009) xxx–xxx 3

ARTICLE IN PRESS
High-Resolution EEG/EP Systems (SynAmps2, Neuroscan) are
decomposed by the wavelet transform and represented in the spa-
tial–spectral–temporal domain as high dimensional third order
tensors; Second, RTDA is developed to extract a multi-way discrim-
inative subspace from the third order tensors in the training data-
set. Third, class features are obtained by projecting the tensors into
the discriminative subspace. Finally, a SVM classifier with linear
kernel function is trained to predict class labels for the testing data.

2.2. Tensor representation of EEG data

In the proposed scheme, EEG signals are decomposed by the
wavelet transform and represented in the spatial–spectral–tempo-
ral domain as the third order tensors, that is, the tensor represen-
tation of multi-channel time-varying EEG spectrums.

For a 2-way (channel� time) EEG epoch sample Xðc;tÞ at channel
c and time t, the third order (channel� frequency� time) tensor
Xðc;f ;tÞ is given by the amplitude of the convolution with a wavelet
function W ðf ;tÞ,

Xðc;f ;tÞ ¼ kW ðt;f Þ � Xðc;tÞk; ð1Þ

In this work, we select the complex Morlet wavelet, wðtÞ ¼ 1ffiffiffiffiffi
pr
p

expð2ipXtÞ expð� t2

rÞ with the center frequency X ¼ 1 and the band-
width parameter r ¼ 2 as the wavelet mother, since it has been suc-
cessfully applied in the analysis of the temporal development of the
frequency of EEG signals (Mørup et al., 2006a,).

2.3. The RTDA algorithm

In this scheme, the RTDA algorithm is applied for discriminative
multi-linear subspace extraction. Given a set of sample data
U ¼ fXn; yng

N
n¼1, Xn 2 RD1�D2�����Dm denotes the nthð1 6 n 6 NÞ sam-

ple (mth order tensor), and yn 2 f1;�1g represents the correspond-
ing class label. The discriminative model is proposed based on
logistic regression, and the log-odds ratio of the posterior class
probability is defined to be a multi-way linear function with re-
spect to the multi-way data X:

log
Pðy ¼ þ1jXÞ
Pðy ¼ �1jXÞ ¼ f ðX; hÞ ¼ X

Ym
d¼1

�dwd þ b; ð2Þ

where h :¼ ðw1 � � �wm; bÞ, wdjmd¼1 are vectors of size Dd and b 2 R is
the bias term. wd is assumed to be the discriminative pattern on the
dth mode, X�dwd is the mode-d product of tensor X and vector wd ,
therefore, X

Qm
d¼1�dwd calculates the coefficient of X being projected

into the discriminative subspace spanned by wdjmd¼1, and then the
parameter b would be derived as a offset in the data. More details
about tensor and its operation can be found in (Tao et al., 2007).

To introduce a probability density function family to model the
class posterior, we use the logistic regression model. The class pos-
terior probability is modeled as:

PðyjX; hÞ ¼ 1
1þ e�yf ðX;hÞ : ð3Þ

The negative log-likelihood of (3) is minimized with additional reg-
ularization terms, which is written as follows:

min
wd jmd¼12RDd ;b2R

XN

n¼1

logð1þ e�ynf ðXn ;hÞÞ þ
Xm

d¼1

k1
dkwdk2 þ k2

djwdj

� k3
dðwT

dKdwdÞ; ð4Þ

here, three types of regularization terms are applied to limit overfit-
ting in learning the discriminative subspace caused by the high data
dimensionality of EEG. k1

dkwdk2 has a shrinking effect on the optimal
solution of wd. k2

d jwdj is a popular regularization term acting as the
sparseness constraint on wd. k3

dðwT
dKdwdÞ declares a prior belief of
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smoothness on wd, in which Kd is a symmetric Dd � Dd matrix. Let
rdði;jÞ be a distance measure between sample i and j on the dth mode,
Kdði;jÞ is defined as 1=rdði;jÞ, so Kdði;jÞ evaluates the degree of correlation
between two samples according to their distance. k1

d ; k
2
d ; k

3
d are the

tuning parameters for the pattern on the dth mode, which balance
a tradeoff between matching the training data and generalizing to
the testing data.

With the multi-way linear probability function and proper reg-
ularization terms, it is particularly convenient to incorporate the
reasonable assumptions about EEG signals into the discriminative
model. Since single trial EEG data are represented as a third order
ðchannel� frequency� timeÞ tensor in this work, the sparseness of
spatial and spectral patterns are enforced by k2

djwdj jd¼1;2 and the
temporal smoothness is imposed by k3

dðwT
dKdwdÞjd¼3, i.e.,

k1
1; k

1
2; k

1
3 > 0, k2

1; k
2
2 > 0; k2

3 ¼ 0, k3
3 > 0; k3

1; k
3
2 ¼ 0. r3ði;jÞ is defined as

the absolute time difference between the sample i and j. The spe-
cific values of those parameters can be automatically selected by
the performance during the training procedure.

It is easy to see that the optimal discriminative patterns, can be
obtained by arg-minimizing (4), as:
wdjmd¼1 ¼ arg min
wd jmd¼12RDd ;b2R

XN

n¼1

log 1þ e
�ynðXn

Qm
d¼1

�dwdþbÞ
0
@

1
A

8<
:

þ
Xm

d¼1

k1
dkwdk2 þ k2

d jwdj � k3
dðwT

dKdwdÞ
)
; ð5Þ
However, the problem defined in (5) does not have a closed form
solution, so the alternating projection method is used to obtain a
numerical solution. Therefore, the solution to (5) is decomposed
into m different optimization sub-problems, as follows,

wdjmd¼1 ¼ arg min
wd2RDd ;b2R

XN

n¼1

log 1þ e
�ynðXn

Qm
l¼1;l – d

�lwlÞ�dwdþb
0
@

1
A

8<
:

þ k1
dkwdk2 þ k2

djwdj � k3
dðwT

dKdwdÞ
)
: ð6Þ
The wd in (6) can be solved by many approximation methods,
and in this paper, the gradient descent technique is applied. Algo-
rithm 1 describes the alternating projection optimization proce-
dure for RTDA with pre-defined tuning parameter k1

d; k
2
d; k

3
d . The

key step is step 3, which involves extracting the most discrimina-
tive pattern wt

d on mode d and in the tth iteration using
wt�1

k j
m
k¼1;k – d found in the ðt � 1Þth iteration. By iterating the step

3 in Algorithm 1, a solution to the optimization problem, that is,
the optimal discriminative patterns on each mode would be
obtained.
t a
Algorithm 1. Regularized tensor discriminant analysis algorithm

Input: The training dataset U ¼ fXn; yng
N
n¼1, Xn 2 RD1�D2�����Dm

denotes the nthð1 6 n 6 NÞ sample (mth order tensor),
yn 2 f1;�1g represents the corresponding class label, the tuning
parameters k1

d ; k
2
d ; k

3
d , and the maximum number of iteration c.

Output: The set of discriminative patterns on each mode fwdjmd¼1g.
Initialization: Set w0

d ¼ 1Dd
jmd¼1.

Method:
1: For iteration number t ¼ 1 to c {
2: For mode d = 1 to m {

3: wt
d ¼ argminwd2RDd ;b2R

PN
n¼1 log 1þ e�yn ðXn

Qm

l¼1;l – d
�l w

t�1
l
Þ�dwt

d
þb

� �
þ

�
k1

dkwt�1
d k

2 þ k2
d jwt

dj � k3
dðwt

dKdwt
dÞg.}

4: break if convergence}
nalysis for single trial EEG classification in BCI. Pattern Recognition Lett.
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3. Experiment setup and data acquisition
Two datasets, collected during our BCI experiments, were used
to verify the effectiveness and robustness of the proposed tensor-
based scheme. Totally, six healthy male subjects, aged from 21 to
30, participated in data collection. They all gave informed consent
as approved by the Ethics Committee. Sixty-two channels of EEG
were recorded by an ESI-128 Channel High-Resolution EEG/EP Sys-
tem (SynAmps2, Neuroscan at Lab for Brian-like Computing and
Machine Intelligence, Shanghai Jiao Tong University, China. EEG
electrode positioning follows the 10–20 International System of
Electrode Placement). In both data collection stages, each subject
was asked to seat in an armchair, keeping arms on the chair arms
with hands relaxing, and two eyes were requested to look at a
computer monitor placed approximately 1 m in front of the subject
at eyes level.

Dataset 1 were collected from four subjects in the motor imag-
ery task, which has been extensively used in BCI systems. The sub-
ject was instructed to imagine a movement of the right or left hand
for about 2s to control a cursor movement on the computer screen.
EEG signals were recorded, sampled at 500 Hz and bandpass fil-
tered between 0.1 Hz and 100 Hz. For each subject, 100 left and
100 right trials were acquired, and divided into a training dataset
(60 trials, 30 trials for each class) and a testing dataset (140 trials,
70 trials for each class).

Dataset 2 were obtained from the other two subjects perform-
ing a cognitive task, i.e., the mental arithmetic. The subject was re-
quested to look at a computer monitor, and calculate in mind when
an arithmetic formula containing three integers was shown on the
screen. The formula displayed for 2 s, and the subject was required
to take relaxation when the formula disappeared from the screen.
EEG signals were recorded, sampled at 1000 Hz and bandpass fil-
7
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tered between 0.1 Hz and 100 Hz. According to the change of visual
cue, EEG data were segmented into two classes of epochs, i.e., men-
tal arithmetic and resting EEG trials. At last, for each subject, 100
mental arithmetic and 100 resting trials were acquired and divided
into a training dataset and a testing dataset in the same fashion as
for dataset 1.
4. Data analysis and performance evaluation

In this section, the proposed tensor-based scheme is applied to
the two aforementioned datasets, and the experimental results are
presented respectively.
4.1. Results on dataset 1

Exemplary spectral characteristics of EEG in motor imagery
tasks are a rhythm (8–13 Hz) and b rhythm (14–30 Hz) which de-
crease during movement or in preparation for movement and in-
crease after movement and during relaxation, and those
phenomena happen in sensorimotor area (centro-parietal lobes)
(Pfurtscheller and Neuper, 1997; Ramoser et al., 2000). In details,
imaging left or right hand movement causes ERD over sensorimo-
tor area on the contralateral hemisphere, whereas ERS on the ipsi-
lateral hemisphere, and there are also some slight differences in
the most discriminative frequency bands and channels depending
on individual subjects. In the subsection, the effectiveness and
robustness of the proposed scheme in dataset 1 are presented,
and the application to channel selection is also demonstrated. For
comparison, the highly successful method in this context, CSP, is
applied to the dataset. Since neural correlates for the motor imag-
ery paradigm are well known, it would be shown that the signifi-
0 0.5 1 1.5 2

10

15

20

25

30

s

H
z

8

+

_
0

rder to give more significant illustration, this figure shows the assemble difference
top of figure with their respective time–frequency plots from 0 to 2 s and 8 to 30 Hz,
e.

t analysis for single trial EEG classification in BCI. Pattern Recognition Lett.

http://dx.doi.org/10.1016/j.patrec.2009.11.012


J. Li, L. Zhang / Pattern Recognition Letters xxx (2009) xxx–xxx 5

ARTICLE IN PRESS
cant results agreeing well with the expectation could be obtained
by the proposed scheme without considering prior knowledge.

It is worth mention that wavelet approach has been widely used
as a feature extraction method for EEG classification, in which the
multi-channel time-varying EEG spectrums have been computed
as feature vectors directly (Lemm et al., 2004; Bostanov, 2004;
Lotte et al., 2007). In order to demonstrate the benefit of the mul-
ti-way analysis of the proposed scheme, the conventional wavelet
transform method (WT) is also applied in the dataset 1, by unfold-
ing the tensor representation multi-channel time-varying spec-
trum into feature vectors.
4.1.1. Classification performance
The raw EEG data were preprocessed by a given frequency band

filter (8–30 Hz, which contains all a and b rhythms related to mo-
tor imagery). Visual inspection showed that artifacts had been
mostly filtered out, and then filtered signals were segmented into
epochs (1 ms to +2000 ms).

The third order tensor Xðchannel� frequency� timeÞ was con-
structed in the given spatial–spectral–temporal range (62 channel;
8–30 Hz; 1–2000 ms, step by 20 ms). In detail, by wavelet trans-
form, 2-way EEG spectrums maps (frequency� time) were obtained
from 1-way data (time) acquired in every channel, and then folding
those multi-channel’s 2-way maps yielded the third order tensor.
Fig. 2 gives an example of the multi-channel’s 2-way maps for
Sub. 3 (in order to give more significant illustration, this figure
shows the assemble difference between two classes of training
data instead of single trial data). In the Fig. 2, it is obviously ob-
served that the high absolute amplitudes with opposite directions
appears on the centro-parietal region of two respective brain hemi-
spheres in a and b rhythm, especially around C3 and C4 channel at
12–13 Hz after 400 ms. This matches the well-known findings in
Table 1
The classification accuracies of the proposed scheme, WT and CSP on dataset 1 (with
data filtered by 8–30 Hz, tensors constructed in the given spatial–spectral–temporal
range (62 channel; 8–30 Hz; 1–2000 ms, step by 20 ms). For CSP, the optimal number
of spatial patterns is also listed.

Subject Sub. 1 Sub. 2 Sub. 3 Sub. 4

CSP Patterns number 2 8 4 6
Accuracy 91.4% 56.4% 90.0% 62.1%

WT Accuracy 79.3% 62.9% 90.0% 55.0%
RTDA Accuracy 83.6% 75.7% 94.3% 61.4%

Fig. 3. The two most important spatial patterns extracted by CSP fo
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this paradigm, and confirms that the multi-channel 2-way EEG
spectrums maps calculating by wavelet transform, i.e., the third or-
der tensors, can capture the ERD and ERS phenomena from the spa-
tial–spectral–temporal domains effectively.

In the case of CSP, the optimal accuracies based on combina-
tions of 2–8 spatial patterns were calculated (more patterns cannot
improve the training accuracy and seem to lead to overfitting), and
the specific number of patterns was decided by the performance in
the training dataset. Classification results listed in the Table 1 pres-
ent that the performance of the proposed scheme compares favor-
ably against CSP. Especially for Sub. 2, the accuracy is up to 75.7%,
while CSP is 56.4%. It also can be seen that the optimal classifica-
tion accuracy of CSP is usually based on a combination of several
patterns, while the proposed scheme can acquire high accuracies
by one multi-way discriminative subspace, which greatly improves
significant interpretations of EEG classification in the spatial–spec-
tral–temporal domain. For the WT method, fisher score is further
applied to select features to improve the classification perfor-
mance. As listed in Table 1, although the WT method proves to
be an effective method for EEG classification, it cannot achieve
higher accuracies than the proposed scheme for each subject, since
the structural information has been ignored in unfolding the multi-
channel time-varying EEG spectrums into vectors.

Fig. 3 shows the two most important spatial patterns of CSP for
each subject, and Fig. 4 illustrates the spatial patterns extracted by
RTDA. Note that in the patterns of CSP in Fig. 3, some channels not
over or close to the sensorimotor cortex also have large absolute
weights because of the CSP algorithm’s tendency to overfitting,
and it is difficult to understand which part of the brain generates
the class relevant activity and identify the discriminative channels.
In contrast with CSP, the patterns extracted by RTDA have great
significance in discrimination (except for Sub. 4. For him, neither
of the methods can acquire a high classification accuracy). As illus-
trated in Fig. 4, channels over centro-parietal on the two brain
hemisphere show the highest absolute weights with opposite
directions for discrimination respectively, which agrees well with
the expected underlying cortical activity patterns during two clas-
ses of motor imagery tasks, e.g., for Sub. 3, C3 and C4 are recog-
nized as the two most important channels with opposite weights,
which means C3 is a focus for one task and at the same time C4 is
another focus for the other task. Significant spectral and temporal
patterns also can be extracted by RTDA as illustrated in Figs. 5
and 6 respectively. The discriminative spectral–temporal charac-
teristics are demonstrated to concentrate on in a rhythm and after
r the four subjects, respectively (with data filtered by 8–30 Hz).

t analysis for single trial EEG classification in BCI. Pattern Recognition Lett.
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30 Hz; 1–2000 ms, step by 20 ms));

Fig. 4. The spatial patterns extracted by RTDA for the four subjects, respectively (with tensors constructed in the given spatial–spectral–temporal range (62 channel; 8–
30 Hz; 1–2000 ms, step by 20 ms));

Table 2
The classification accuracies of the proposed scheme, WT and CSP on dataset 1 (with
data filtered by 4–45 Hz, tensors constructed in the general spatial–spectral–
temporal range (62 channel; 4–45 Hz, step by 2 Hz; 1–2000 ms, step by 20 ms). For
CSP, the optimal number of spatial patterns is also listed.

Subject Sub. 1 Sub. 2 Sub. 3 Sub. 4

CSP Patterns number 2 8 4 6
Accuracy 52.9% 52.9% 45.0% 51.4%

WT Accuracy 77.1% 60.0% 91.4% 52.9%
RTDA Accuracy 83.6% 75.0% 93.6% 57.1%
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stimulus apparently. There are some quantitative differences
among subjects, and evident b rhythm activity is also observed
for Sub. 3.

4.1.2. Robustness investigation
To investigate the robustness of the proposed scheme, the fea-

ture extraction without prior neurophysiologic knowledge was
also considered. The raw EEG data were just preprocessed by filter-
ing through the general EEG wave spectral range (4–45 Hz) and the
third order tensor Xðchannel� frequency� timeÞ was constructed
in the general spatial–spectral–temporal range (62 channel; 4–
45 Hz, step by 2 Hz; 1–2000 ms, step by 20 ms;). Classification
Please cite this article in press as: Li, J., Zhang, L. Regularized tensor discriminan
(2009), doi:10.1016/j.patrec.2009.11.012
accuracies of CSP, WT and the proposed scheme are all listed in Ta-
ble 2. For all subjects, classification accuracies of CSP drop below
60%. As wavelet transform is a robust algorithm to obtain the
EEG spectrums, the WT method keeps up high performance, but
then with the multi-way analysis of the tensor representation of
EEG spectrums, the proposed scheme always achieves higher accu-
racies than the WT method.

Fig. 7 shows the two most important spatial patterns for each
subject extracted by CSP. Compared with the previous patterns
with data filtered by 8–30 Hz in Fig. 3, they have no significance
in discrimination at all. However, significant patterns can still be
extracted by RTDA. The spatial patterns in Fig. 8 and the spectral
patterns in Fig. 9 are highly consistent with the previous patterns
as shown in Figs. 4 and 5 respectively.

Therefore, CSP achieves good performance only in classification
of properly preprocessed EEG data and is ineffective for spectral
properties lacking tasks (i.e., the prior neurophysiologic knowledge
of those tasks is not available), however, the proposed scheme is
more powerful than CSP to extract discriminative features robustly
without prior neurophysiologic knowledge.
4.1.3. Application to channel selection
Although CSP is highly successful for the motor imagery para-

digm, it is also known for its tendency to overfitting (Farquhar
t analysis for single trial EEG classification in BCI. Pattern Recognition Lett.
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Fig. 8. The spatial patterns extracted by RTDA for the four subjects, respectively (with tensors constructed in the general spatial–spectral–temporal range (62 channel;
4–45 Hz, step by 2 Hz; 1–2000 ms, step by 20 ms));
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Fig. 9. The spectral patterns extracted by RTDA for the four subjects, respectively (with tensors constructed in the general spatial–spectral–temporal range (62 channel;
4–45 Hz, step by 2 Hz; 1–2000 ms, step by 20 ms));

Fig. 7. The two most important spatial patterns extracted by CSP for the four subjects, respectively (with data filtered by 4–45 Hz).

Fig. 10. A procedure that the extracted spatial pattern is sparsified as the sparseness is enhanced in training stage with data from Sub. 3.
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et al., 2006). As illustrated in Figs. 3 and 7, the extracted patterns of
CSP cannot be counted onto exactly identify the most significant
channels for classification. Additionally, this drawback makes it
Please cite this article in press as: Li, J., Zhang, L. Regularized tensor discriminan
(2009), doi:10.1016/j.patrec.2009.11.012
typically require a large number of channels to be mounted,
whereas the practical application of BCI is expected to be imple-
mented with a small number of channels.
t analysis for single trial EEG classification in BCI. Pattern Recognition Lett.
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Table 3
The classification accuracies of the proposed scheme on dataset 1 only using two
selected channels’ data.

Subject Sub. 1 Sub. 2 Sub. 3 Sub. 4

Selected channels CP3,CP4 CP1,CP4 C3,C4 C4,T8
Accuracy 83.6% 70.7% 93.6% 56.4%

Table 4
The classification accuracies of the proposed scheme and CSP on dataset 2.

Subject Sub.5 Sub.6

RTDA 85.0% 75.1%
CSP 79.3% 69.3%
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The proposed scheme can be applied to channel selection in BCI
effectively. In RTDA, the sparseness regularization term imposed
on the spatial pattern lowers the weights of the channels little re-
lated to discrimination and heightens those of the most significant
channels for classification. By searching the maximum weights in
the extracted spatial pattern, the most significant channels for clas-
sification are identified automatically.

Fig. 10 illustrates a procedure that the spatial pattern is sparsi-
fied as the sparseness is enhanced in the training stage with data
from Sub. 3. Finally, C3 and C4 are identified as the most significant
channels. For all subjects, the most significant channels can be se-
lected out in the spatial patterns shown in Fig. 4 or Fig. 8, and they
agree well with the expected underlying cortical activity (except
for Sub. 4). For each subject, we only held the two selected chan-
nels’ data to calculate classification accuracies according to the
proposed scheme. The results listed in Table 3 show that the opti-
mal performance can be closely achieved.

4.2. Results on Dataset 2

Compared with the motor imagery, the cognitive task has rarely
been applied in BCI community, and the spectral characteristics in
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this paradigm are not well known in advance as in the motor imag-
ery task. Therefore, the simulation on dataset 2 involving the cog-
nitive task was used to explore the efficiency of the proposed
scheme in the case of lacking prior neurophysiologic knowledge.

The raw EEG data were preprocessed by the band filter in the
general EEG wave spectral range (4–45 Hz), and then the EEG data
were segmented into epochs (1 ms to +2000 ms). For each trial, the
third order tensor X (channel� frequency� time) was constructed
in the general EEG spectral range (62 channel; 4–45 Hz, the general
EEG wave frequency range, step by 2 Hz; 1–2000 ms, step by
20 ms;). Fig. 11 gives an example of the multi-channel’s 2-way
EEG spectrums maps for Sub. 5 (in order to give more significant
illustration, this figure shows the assemble difference between
two classes of training data instead of single trial data). The mul-
ti-channel 2-way maps present that the discriminative characteris-
tics are concentrated on the low frequency especially the h band
(4–7 Hz) activity in the frontal area. For comparison, CSP was also
used in those epoch data. As listed in Table 4, the proposed scheme
can achieve high classification accuracies. The spatial–spectral–
temporal patterns of the discriminative subspace extracted by
RTDA are illustrated for each subject in Figs. 12 and 13 respec-
tively. The results indicate that the discriminative characteristics
AF
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Fig. 12. The spatial–spectral–temporal patterns extracted by RTDA for Sub. 5.
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Fig. 13. The spatial–spectral–temporal patterns extracted by RTDA for Sub. 6.
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are not concentrated on band of 8–30Hz over centro-parietal that
is important for the motor imagery tasks, while the low frequency
especially the h band (4–7 Hz) activity in the frontal area is closely
related to the discrimination. Furthermore, by the previously intro-
duced channel selection method, the number of used channels can
also be reduced to 2 and there is no loss in the classification
performance.

5. Conclusion

In this paper, a tensor-based scheme is introduced for single
trial EEG classification.

First, benefiting from the ability of wavelet transform to con-
struct a time–frequency representation, the 2-way (channel�
time) EEG signals can be converted into the third order
(channel� frequency� time) tensors, revealing the spatial–spec-
tral–temporal characteristic of EEG signals directly. Then, the RTDA
algorithm is proposed for a discriminative subspace extraction
from tensor-represented EEG data By multi-way discriminative
analysis and regularization terms incorporating reasonable
assumptions about EEG signals, RTDA overcomes the difficulties
in extracting class features from the EEG signal due to its low sig-
nal-to-noise ratio and high data dimensionality. Unlike the con-
ventional wavelet transform method, the proposed scheme
includes the structural information in multi-channel time-varying
EEG spectrums endorsed by tensor representation, and improves
the performance for EEG classification. Evaluations on two datasets
confirm the effectiveness and robustness of the proposed scheme.
For the motor imagery task, the proposed scheme achieves some
better performance than CSP and works well without prior neuro-
physiologic knowledge. In the cognitive task, although the discrim-
inative characteristics are not specifically known as the motor
imagery task, the scheme still extracts the discriminative patterns
and features in the general EEG wave range and acquires very high
classification accuracies. It is worth mentioning that the proposed
scheme can be applied to channel selection in BCI effectively. It is
demonstrated that the number of used channels can be reduced to
2 in two datasets with very little loss in performance.

This study shows that the proposed tensor-based scheme is effi-
cient for single trial EEG classification in BCI and RTDA algorithm is
a promising data exploratory tool for developing BCI system.
Please cite this article in press as: Li, J., Zhang, L. Regularized tensor discriminan
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