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Abstract

As tensors provide a natural and efficient representation
of multidimensional structured data, in this paper, we
consider probabilistic multinomial probit classification
for tensor-variate inputs with Gaussian processes (GP)
priors placed over the latent function. In order to take
into account the underlying multimodes structure infor-
mation within the model, we propose a framework of
probabilistic product kernels for tensorial data based on
a generative model assumption. More specifically, it can
be interpreted as mapping tensors to probability density
function space and measuring similarity by an informa-
tion divergence. Since tensor kernels enable us to model
input tensor observations, the proposed tensor-variate
GP is considered as both a generative and discriminative
model. Furthermore, a fully variational Bayesian treat-
ment for multiclass GP classification with multinomial
probit likelihood is employed to estimate the hyperpa-
rameters and infer the predictive distributions. Simula-
tion results on both synthetic data and a real world ap-
plication of human action recognition in videos demon-
strate the effectiveness and advantages of the proposed
approach for classification of multiway tensor data, es-
pecially in the case that the underlying structure in-
formation among multimodes is discriminative for the
classification task.

Introduction
Tensors (also called multiway arrays) are generalization of
vectors and matrices to higher dimensions and are equipped
with corresponding multilinear algebra. Development of
theory and algorithms for tensor decompositions (factor-
izations) has been an active area of study within the past
decade, see e.g. (Cichocki et al. 2009; Kolda and Bader
2009), and the methods have been successfully applied to
problems in unsupervised learning and exploratory data
analysis. Multiway analysis enables us to effectively cap-
ture the multilinear structure of the data, which is usu-
ally available as a priori information on the data nature.
There is a growing need for the development and application
of machine learning methods to analyze multidimensional
data, such as functional magnetic resonance (fMRI), electro-
corticography (ECoG), electroencephalography (EEG) data,
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and 3D video sequences, thus emphasizing the need to take
the information on the structure of the original data into ac-
count. Tensors provide a natural and efficient way to de-
scribe such multidimensional structured data, and the corre-
sponding learning methods can explicitly exploit the a pri-
ori information of data structure and capture the underly-
ing multimode relations to achieve useful decompositions
of the data with good generalization ability. Recent research
has addressed extensions of the kernel concept into ten-
sor decompositions (Signoretto, De Lathauwer, and Suykens
2011; Xu, Yan, and Qi 2012), aiming to bring together the
desirable properties of kernel methods and tensor decompo-
sitions for significant performance gain when the data are
structured and nonlinear dependencies among latent vari-
ables do exist. In (Xu, Yan, and Qi 2012), the nonlinear
tensor decomposition problem is addressed by a Kronecker
product of kernels that are obtained from different groups
of vector inputs. In (Signoretto, De Lathauwer, and Suykens
2011), the Chordal distance-based kernel for tensorial data
is introduced with rotation and reflection invariance on the
Grassmann manifold.

Gaussian process (GP) (Rasmussen and Williams 2006;
Kersting and Xu 2009) is attractive for non-parametric prob-
abilistic inference because knowledge can be specified di-
rectly in the prior distribution of latent function through the
mean and covariance function. Inference can be achieved in
a closed form for regression under a Gaussian likelihood,
but approximation is necessary under non-Gaussian likeli-
hoods. Gaussian process can be extended to binary clas-
sification problems by employing logistic or probit like-
lihoods (Nickisch and Rasmussen 2008), while multino-
mial logistic or multinomial probit likelihoods are employed
in multiclass Gaussian process classification (Williams and
Barber 1998; Chai 2012; Girolami and Rogers 2006). Since
exact inference is analytically intractable for logistic and
probit likelihoods, approximation inference is widely ap-
plied, such as Laplace approximation (Williams and Barber
1998), expectation propagation (Kim and Ghahramani 2006;
Riihimäki, Jylänki, and Vehtari 2012) and variational ap-
proximation (Girolami and Rogers 2006).

In this paper, we extend multiclass GP classification to
a tensor variate input space in order to consider the mul-
tiway structure of inputs into the model learning and pre-
dictions, which is important and promising for multidimen-
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sional structured data classification. To this end, a new GP
prior for the latent function is necessary, which can ex-
plicitly encode tensor structure information into the covari-
ance function. Therefore, we propose a new family of multi-
mode product kernels for tensorial data based on probabilis-
tic generative models and information divergences. Unlike
the Kronecker product kernel in (Xu, Yan, and Qi 2012;
Saatci 2011), our tensor kernel is defined on tensor inputs
and the objective is to make classification for tensor obser-
vations. The multinomial probit likelihood with variational
Bayesian approximation are then employed for a multiclass
tensor variate GP classification framework. In contrast with
the standard GP, our proposed tensor-based GP (Tensor-
GP) enables us to model both the input data by multiple
generative models and the corresponding outputs by a pro-
bit likelihood model, which is promising to bring together
the advantages of generative and discriminative models. In
addition, Tensor-GP has several advantages over classical
tensor-based methods, such as handling tensors with missing
values, inference of hyperparameters, and providing uncer-
tainty of predictions. Both simulations on synthetic data and
a real-world application of video classification demonstrate
the effectiveness and advantages of Tensor-GP, especially in
the case that multiway structure is informative and discrim-
inative for a specific classification problem.

Multilinear Algebra
For the development to follow, we first introduce the no-
tation adopted in this paper. Tensors are denoted by calli-
graphic letters, e.g., X ; matrices by boldface capital letters,
e.g., X; and vectors by boldface lowercase letters, e.g., x.
The order of a tensor is the number of dimensions, also
knows as ways or modes. The element (i1, i2, . . . , iN ) of an
N th-order tensor X is denoted by xi1i2...iN or (X )i1i2...iN ,
in which indices typically range from 1 to their capital ver-
sion, e.g., in = 1, . . . , In. Matricization, also known as
unfolding, is the process of reordering the elements of a
tensor into a matrix. More specifically, the mode-n ma-
tricization of a tensor X ∈ RI1×I2×···×IN is denoted by
X(n) ∈ RIn×I1···In−1In+1···IN , while the vectorization of
a tensor is denoted as vec(X ). The inner product of two
same-sized tensors X ,X ′ ∈ RI1×···×IN is defined by
〈X ,X ′〉 =

∑
i1i2...iN

xi1i2...iNx
′
i1i2...iN

, and the squared
Frobenius norm by ‖X‖2F = 〈X ,X〉.

The two most commonly used decompositions are the
Tucker model and CANDECOMP/PARAFAC (CP) model,
both of which can be regarded as higher-order generaliza-
tions of the matrix singular value decomposition (SVD).
Let X ∈ RI1×I2×···×IN denote an N th-order tensor, then
Tucker model is defined as follows:

X = G ×1 U(1) ×2 U(2) · · · ×N U(N) (1)
where G ∈ RR1×···×RN denotes the core tensor and U(n) ∈
RIn×Rn denotes the mode-n factor matrix. If all factor ma-
trices {U(n)}Nn=1 are columnwise orthonormal and the core
tensor G is all-orthogonal (i.e., any subtensors are orthogo-
nal) and ordered, this decomposition is called higher-order
singular value decomposition (HOSVD). If all the factor ma-
trices have the same number of components, and the core

tensor is super-diagonal, Tucker model simplifies to CP de-
composition (Kolda and Bader 2009; De Sterck 2012) which
can be also defined as a sum of rank-one tensors:

X =
R∑

r=1

λr u(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r , (2)

where the symbol ‘◦’ denotes the outer product of vectors
and R is defined as tensor rank (Kolda and Bader 2009).
In general, CP model is considered to be a multilinear low-
rank approximation while Tucker model is regarded to be a
multilinear subspace approximation.

Multiclass Gaussian Processes Classification
We consider a classification problem consisting of M th-
order tensors Xn ∈ RI1×···×IM associated with target
classes yn ∈ {1, . . . , C}, where C > 2, for n = 1, . . . , N .
All class labels are collected in the N × 1 target vec-
tor y, and all tensors are concatenated in a (M + 1)th-
order tensor X of size N × I1 × · · · × IM . Given the
latent function fn = [f1n, f

2
n, . . . , f

C
n ]T = f(Xn) at the

observed input location Xn, the class labels yn are as-
sumed independently and identically distributed as defined
by a multinomial probit likelihood model p(yn|f). The la-
tent vectors from all observations are denoted by f =
[f11 , . . . , f

1
N , f

2
1 , . . . , f

2
N , . . . , f

C
1 , . . . , f

C
N ]T . Our goal is to

predict the class membership for a new input tensorX∗ given
the observed data D = {X ,y}. We place Gaussian process
priors on the latent function related to each class, which is
the common assumption in multiclass GP classification (see
(Rasmussen and Williams 2006; Riihimäki, Jylänki, and Ve-
htari 2012)). This specification results in the following zero-
mean Gaussian prior for f :

p(f |X ) = N (0,K), (3)

where K is a CN × CN blocked diagonal covariance ma-
trix with matrices K1, . . . ,KC (of size N ×N ) on its diag-
onal corresponding to each class respectively. Element Kc

i,j
in cth class covariance matrix defines the prior covariance
between f ci and f cj , which is governed by a kernel func-
tion k(Xi,Xj), i.e.,Kc

i,j = k(Xi,Xj) = Cov(f ci , f
c
j ) within

the class c. Note that the kernel function should be defined
in tensor-variate input space, hence commonly used kernel
functions, such as Gaussian RBF, are infeasible. Therefore,
a new framework of probabilistic product kernel for ten-
sors are introduced and discussed in the next Section. In
kernel function, hyperparameters are defined to control the
smoothness properties and overall variance of latent func-
tions, which usually are collected into one vector θ. For
simplicity, we use the same θ for all classes. For likelihood
model, we consider the multinomial probit, which is a gen-
eralization of the probit model, given as

p(yn|fn) = Ep(un)


C∏

c=1,c6=yn

Φ(un + fyn
n − f cn)

 , (4)

where Φ denotes the cumulative density function of the stan-
dard normal distribution, and the auxiliary variable un is dis-
tributed as p(un) = N (0, 1).
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By applying Bayes’ theorem, the posterior distribution of
the latent function is given by

p(f |D,θ) =
1

Z
p(f |X ,θ)

N∏
n=1

p(yn|fn), (5)

where Z =
∫
p(f |X ,θ)

∏N
n=1 p(yn|fn)df is known as

the marginal likelihood. Inference for a test input X∗
is performed in two steps. First the posterior distribu-
tion of latent function f∗ is given as p(f∗|D,X∗,θ) =∫
p(f∗|f ,X∗,θ)p(f |D,θ)df . Then we compute the pos-

terior predictive probability of X∗, which is given by
p(y∗|D,X∗,θ) =

∫
p(y∗|f∗)p(f∗|D,X∗,θ)df∗. Since non-

Gaussian likelihood model results in an analytically in-
tractable posterior distribution, thus variational approxima-
tive methods can be used for approximative inference.

Probabilistic Product Kernels for Tensors
The kernels are considered by defining a topology implying
the a priori knowledge about invariance in the input space.
Although many kernels have been designed for a number
of structured objects, few approaches exploit the structure
of tensorial representations. In this section, we discuss the
kernels for tensor-variate inputs, which can take multiway
structure into account for similarity measures.

There are some valid reproducing kernels admit a straight-
forward generalization to M th-order tensors, such as the
kernel functions k : X × X → R given as

Linear kernel: k(X ,X ′) = 〈vec(X ), vec(X ′)〉,

Gaussian-RBF: k(X ,X ′) = exp
(
− 1

2β2
‖X − X ′‖2F

)
.

In order to define the similarity measure that directly ex-
ploits multilinear algebraic structure of input tensors, a prod-
uct kernel based on Chordal distance (projection Frobe-
nius norm) on Grassmannian manifolds was proposed (Sig-
noretto, De Lathauwer, and Suykens 2011).

Probabilistic kernels in vector input space have been
investigated based on generative models and information
divergences, such as Fisher kernel (Tsuda et al. 2004)
and Kullback-Leibler kernel (Moreno, Ho, and Vasconcelos
2003). The Fisher kernel assumes a generative model that
well explains all data samples and maps each sample into a
gradient log-likelihood parameter space. Here, we propose
a new probabilistic kernel framework for multiway tensors
based on the assumption that each M th-order tensor ob-
servation (e.g., Xn ∈ RI1×···×IM ) is considered individ-
ually as M different generative models. More specifically,
mode-m matricization Xn(m)

is regarded as an ensemble of
multivariate instances with dimensionality of Im and num-
ber of instances of I1I2 · · · Im−1Im+1 · · · IM , generated
from a parametric model p(x|λn

m). In this manner, X has
been successfully mapped intoM -dimensional model-based
probability distribution function space, i.e., {p(x|λn

m)|m =
1, . . . ,M}. Subsequently, similarity measure between two
tensors X and X ′ in mode-m is defined as

Sm(X||X ′) = D
(
p(x|λXm)‖q(x|λX

′

m )
)
, (6)

where p, q represent mode-m probability density function
for X and X ′ respectively and D(p||q) is an information
divergence between two distributions. One popular informa-
tion divergence is the symmetric Kullback-Leibler (sKL) di-
vergence (Moreno, Ho, and Vasconcelos 2003) expressed as

DsKL

(
p(x|λ)||q(x|λ′)

)
=

1

2

∫ +∞

−∞
p(x|λ) log

p(x|λ)

q(x|λ′)
dx

+
1

2

∫ +∞

−∞
q(x|λ′) log

q(x|λ′)
p(x|λ)

dx. (7)

Another possibility is the Jensen-Shannon (JS) diver-
gence (Chan, Vasconcelos, and Moreno 2004; Endres and
Schindelin 2003) expressed by

DJS(p||q) =
1

2
KL(p||r) +

1

2
KL(q||r), (8)

where KL(·||·) denotes Kullback-Leibler (KL) divergence
and r(x) = 1

2 (p(x) + q(x)) represents a mixture distribu-
tion. The JS divergence can be interpreted as the average
KL divergence between each probability distribution and the
average distribution, or equivalently as the diversity of two
distributions with equal priors. Finally, a probabilistic kernel
for tensors is defined as a product of mode-m factor kernels,
which is given by

k(X ,X ′) = α2
M∏

m=1

exp
(
− 1

2β2
m

Sm(X||X ′)
)
, (9)

where α denotes a magnitude parameter and [β1, . . . , βM ]
play the role of characteristic length-scales which implement
automatic relevance determination (ARD) (Rasmussen and
Williams 2006). All kernel parameters are usually denoted
by θ = {α, βm|m = 1, . . . ,M}. It can be shown that both
sKL and JS divergences are non-negative and equal to zero
when p(x) = q(x), while they do not fulfill the triangle in-
equality (i.e., we do not haveD(p||q) ≤ D(p||r)+D(r||q)).
However, it has been proven in (Endres and Schindelin 2003;
Chan, Vasconcelos, and Moreno 2004) that [DsKL(p||q)] 1

2

and [DJS(p||q)] 1
2 fulfill the triangle inequality thus is a met-

ric, implying that tensor kernel defined in (9) is a metric ker-
nel.

For simplicity, Gaussian model assumption is employed
with model parameters including a mean vector and a full
covariance matrix, i.e., λm = {µm,Σm} that can be es-
timated by maximum likelihood from X(m). The detailed
algorithms of sKL and JS between two multivariate Gaus-
sian are given in (Moreno, Ho, and Vasconcelos 2003;
Abou-Moustafa and Ferrie 2012). In practice, because of the
absence of closed-form solutions for probabilistic kernels,
one may end up with a kernel matrix that is not positive-
definite due to inaccuracies in the approximations.

The tensor kernels described here have some interest-
ing properties. An intuitive interpretation for the operation
performed is that M th-order tensor observations are first
mapped into M -dimensional probability density function
space, then information divergence is applied as a similarity
measure. Hence, such a kernel combines generative models
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Figure 1: Three classes data points are shown in their first
three dimensional space.

with discriminative ones when used in conjunction with a
specific discriminative method such as the GP classifier. The
probabilistic tensor kernel can handle tensors with missing
values or different sizes. Furthermore, the number of kernel
parameters in (9) is much smaller than that of the RBF ker-
nel performed on unfolded tensors, implying that the tensor
kernel is less prone to overfitting.

Variational Bayesian Inference
Based on the probabilistic tensor kernel described above, GP
prior for cth latent function f c(X ) can be rewritten as

f c(X )|X ,θc ∼ GP(0, k(X ,X ′|θc)), (10)

where the hyperparameters {θc}Cc=1 are set to the same for
all classes and the kernel parameter α is set to a constant,
i.e., θ = [β1 . . . βM ]T which consists of length-scales pa-
rameters. An hierarchic hyperprior is placed over θ such
that each hyperparameter has, for example, an independent
exponential distribution given by ϕm ∼ Exp(ψm) where
ϕm = 1/2β2

m, and a Gamma prior is placed on the mean
values of the exponential ψm ∼ Γ(σ, τ) thus forming a con-
jugate pair. The associated hyperparameters σ, τ are simply
set to 10−6.

We now consider the variational Bayesian approxima-
tion for GP classification. The posterior p(f |D) is approxi-
mated by the variational posterior q(f |D) by minimizing the
Kullback-Leibler divergence

KL(q(f |D)||p(f |D)) =

∫
q(f |D) log

q(f |D)

p(f |D)
df . (11)

This is the difference between the log marginal likeli-
hood log p(y) and a variational lower bound. Finally, the
posterior for latent function is approximated by q(f) =∏N

n=1 q(fn) =
∏N

n=1N
yn

fn
(m̃n, I). If we also consider the

set of hyperparameters in this variational treatment then the
approximate posterior for the covariance kernel hyperpa-
rameters takes the form of

q(ϕ) ∝ N (0,Kϕ)
M∏

m=1

Exp(ϕm|ψ̃m), (12)

and the required posterior expectations can be estimated by
employing importance sampling. The hyperparameters in
hyperprior is approximated by q(ψm) = Γ(σ + 1, τ + ϕ̃m)
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Figure 2: Evolution of estimated posterior means for the in-
verse squared length scale hyperparameters.
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Figure 3: Performance comparison between Tensor-GP and
the GP classifier with relatively small number of samples for
model learning.

and the associated posterior mean is simply obtained by
ψ̃m = (σ + 1)/(τ + ϕ̃m). The detailed procedure for ap-
proximation inference can be found in (Girolami and Rogers
2006).

Experimental Results
Illustrative simulations on synthetic data
In order to investigate the properties and advantages of
tensor-based GP classification approach, two experiments
have been performed on synthetic datasets under conditions
with respect to data structure and number of obervations.

In the first simulation, 27-dimensional data vectors x were
generated such that if y = 1 then 0.5 > x21 +x22 +x23 > 0.1,
for y = 2 then 1.0 > x21 + x22 + x23 > 0.6 and for y = 3
then [x1, x2, x3]T ∼ N (0, 0.01I). The remaining dimen-
sions [x3, . . . , x27]T are all distributed asN (0, 0.1). Hence,
the first three dimensions are discriminative for the classifi-
cation, as shown in Fig. 1, while the remaining 24 dimen-
sions are irrelevant to the classification task. The three tar-
get values were sampled uniformly thus creating a balance
of samples drawn from the three target classes. For com-
parison, the GP multiclass classifier (Girolami and Rogers
2006) was performed on the dataset {xn} ∈ R27 with la-
bels {yn}, while the proposed Tensor-GP was performed on
the same dataset represented by tensors {Xn} ∈ R3×3×3

with labels {yn} where Xn is obtained by tensorization of
xn. One hundred samples drawn from the above distribu-
tion were used in the variational inference routine with a
further 70 points being used for performance evaluation.
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Figure 4: Evolution of estimated posterior means for the in-
verse squared length scale hyperparameters on a dataset gen-
erated by CP model.
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Figure 5: Performance comparison between Tensor-GP and
the GP classifier on structured tensors generated by a multi-
linear CP model.

A common radial basis covariance function of the form
kij = exp(

∑
d |xid − xjd|2/2β2

d) was employed by stan-
dard GP and the covariance function in (9) was employed
by Tensor-GP. A hyperprior is placed on ϕ = 1/2β2 for
inference of hyperparameters in covariance functions. The
variational iterations ran for twenty steps where the esti-
mated posterior mean values for the covariance function pa-
rameters ϕ̃d shows automatic relevance detection (ARD) in
progress. From Fig. 2, as would be expected that the 24 ir-
relevant features are effectively removed from the model in
standard GP. For Tensor-GP, the mode-1 factor kernel is re-
moved from the model, which depends on how significant
the first three features affect the distributions in each mode.
The predictive performance are compared in Fig. 3. Observe
that on this dataset with a relative small number of sam-
ples for model learning, the proposed Tensor-GP classifier
achieves a predictive performance of 94%, while the perfor-
mance of standard GP is only 78%. This result illustrates
that although multiway structures of original data are not
discriminative for classification task, Tensor-GP still works
well and outperforms standard GP in case of small sample
sizes.

Since Tensor-GP model is assumed to be more suitable
for multidimensional structured data which originally con-
tains a multiway structure and the information carried by
interaction among different modes are discriminative for the
classification task. In the second simulation, multiway ten-
sor data were generated according to the CP model, defined
in (2), with {u(m)

r , r = 1, . . . , R,m = 1, . . . ,M} are drawn
from N (0, σ2

mI) and {λr}Rr=1 ∼ N (0, 1). The rank of ten-

sors is set to R = 20, the order of tensors is set to M = 3
and the size in each mode is set to 3, thus U(m) ∈ R3×20

and X ∈ R3×3×3. Three classes data {X ,y} were gener-
ated such that if y = 1 then σ = [1, 1, 1], for y = 2 then
σ = [1, 1.01, 1] and for y = 3 then σ = [1.02, 1, 1]. Thus,
the distribution of the first two modes are discriminative
while the third mode is irrelevant to the classification task.
For comparison, the standard GP was also applied on dataset
{X,y} where X consists of vectorization of each tensor
data point by xn = vec(Xn). As can be seen from Fig. 4,
after 20 variational iterations, the posterior mean values of
length-scale hyperparameters are well learned in Tensor-GP.
As would be expected, mode-3 factor kernel is effectively
removed from the model as it contains no discriminative in-
formation, and model-1 factor kernel is shown to be the most
discriminative, which is consistent with the three classes
data having larger discrepancy of distributions in mode-1
than mode-2. For GP classifier, as shown in Fig. 4, there are
no features to be removed or enhanced significantly, which
is also consistent with the dataset since the most discrimi-
native information does not lie in any specific features but
the global distribution of all features. The predictive per-
formance are compared in Fig. 5, which shows real class
labels, predictions by Tensor-GP, and predictive probability
(or confidence) for each class by two methods. The advan-
tages of proposed method is significant such that Tensor-GP
achieves a predictive performance of 100% with high con-
fidence, while GP obtains a predictive performance of 37%,
implying that it completely fails to classify this dataset.

These two examples demonstrate that our proposed
Tensor-GP is feasible for general classification tasks and
shows advantages on large number of features with small
number of observations. The most important point is that
when data structure are discriminative for a classification
task, Tensor-GP enables us to effectively capture the multi-
mode structure of inputs represented by tensors, resulting in
an enhanced predictive performance. In addition, the num-
ber of hyperparameters in Tensor-GP is relatively small and
thus it is less prone to overfitting.

Figure 6: Three examples of video sequences for hand wav-
ing, hand clapping and walking actions, which are repre-
sented as third-order tensors.

Action classification in videos on KTH dataset
Human action recognition in videos is of high interest
for a variety of applications such as video surveillance,
human-computer interface and video retrieval, where the
most competing methods are based on motion estima-
tion (Ali and Shah 2010), local space-time interest points
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Figure 7: Classification results and probability of predictions
on the test set.

and visual code words (Niebles, Wang, and Fei-Fei 2008;
Holte et al. 2012), multiple classifiers (Song et al. 2011;
Zhang et al. 2011), sparse representation (Guha and Ward
2012) and multiway tensor methods (Kim and Cipolla 2009;
Lui, Beveridge, and Kirby 2010). Tensor representation en-
ables us to directly analyze 3D video volume and encode
global space-time structure information. To illustrate the ad-
vantages of tensor-based Gaussian process, we applied it for
video classification on the largest public KTH human action
database (Schuldt, Laptev, and Caputo 2004) that contains
six types of actions (walking (W), running (R), jogging (J),
boxing (B), hand-waving (H-W), and hand-clapping (H-C))
performed by 25 persons in four different scenarios (out-
doors, outdoors with scale variation, outdoors with different
clothes, and indoors). The total 600 video sequences are di-
vided with respect to the persons into a training set (8 per-
sons), a validation set (8 persons) and a test set (9 persons)
according to the standard setting in (Schuldt, Laptev, and
Caputo 2004). Each video is space-time aligned and uni-
formly resized to 20×20×32, which are then be represented
by a third-order tensor Xn (see Fig. 6). Since our model
can infer hyperparameters without validation procedure, we
simply use the training and validation sets for model learn-
ing and make classifications on the test set. The classifica-
tion results on the test set are shown in Fig. 7 which also
shows the probability or confidence of their predictions. Ob-
serve that misclassified videos always show less confidence
as compared with correctly classified ones. The confusion
matrix on test set are shown in Table 1, in which rows cor-
respond to the ground truth, and columns correspond to the
classification results. It can be seen that our method achieves
average accuracy of 94% and the confusion mainly appears
between running and jogging, and between hand clapping
and waving, which is consistent with our intuition that these
two pairs of actions are easily confused. In addition, the
comparisons with the state-of-the-art methods on the KTH
dataset are shown in Table 2 and our method achieves simi-
lar classification accuracy as TCCA(Kim and Cipolla 2009)
and better than WX/SVM(Wong, Kim, and Cipolla 2007),
MIL(Ali and Shah 2010), pLSA/LDA(Niebles, Wang, and
Fei-Fei 2008), LF/SVM(Schuldt, Laptev, and Caputo 2004).
As compared to TCCA, Tensor-GP does not require the pre-
cise space-time alignment and is able to naturally infer the
hyperparameters. In addition, Tensor-GP can provide the un-
certainty of the predictions and can handle tensor observa-
tions with missing values. These properties make Tensor-GP

more interesting and promising for structured data classifi-
cation. In summary, both global and local space-time infor-
mation are discriminative and promising for action recogni-
tion and the results demonstrate the effectiveness of the pro-
posed probabilistic tensor kernel on capturing global space-
time structures of video volumes and the advantages of the
proposed multiclass tensor-based GP for classification.

Table 1: Confusion matrix (average accuracy 94%)
Walk Run Jog Box H-C H-W

Walk 1.0 0 0 0 0 0

Run .08 .78 .06 .08 0 0

Jog .03 .03 .94 0 0 0

Box 0 0 0 1.0 0 0

H-C 0 0 0 0 .98 .02

H-W 0 0 0 0 .08 .92

Table 2: Comparisons on the KTH data set.
TCCA WX/SVM MIL pLSA/LDA LF/SVM
95.33% 91.6% 87.7% 83.33% 71.72%

Conclusions

We propose a multiclass Gaussian process classification
framework with tensor-variate inputs, which brings together
the advantages of GP model and tensor representation. The
main contribution of this work is to introduce a new family
of probabilistic kernels for higher-order tensors using infor-
mation divergences, which can be employed to specify a GP
prior for latent functions. Thus a tensor-variate GP classi-
fier based on multinomial probit likelihood and a fully vari-
ational Bayesian treatment is developed, which has shown
to be promising for classification of multidimensional struc-
tured data, especially when data structure is discriminative.
The empirical comparisons with variational GP with vector
inputs suggest that the proposed probabilistic kernel for ten-
sors is an effective similarity measure with respect to predic-
tive performance. Therefore a new perspective for the devel-
opment of a range of machine learning methods that admit
the underlying multilinear structure is provided. The effec-
tiveness of tensor-based GP classifier is also demonstrated
by a real-world application of human action recognition in
videos.
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