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Abstract—A new generalized multilinear regression model, termed the higher order partial least squares (HOPLS), is introduced with

the aim to predict a tensor (multiway array) Y from a tensor X through projecting the data onto the latent space and performing

regression on the corresponding latent variables. HOPLS differs substantially from other regression models in that it explains the data

by a sum of orthogonal Tucker tensors, while the number of orthogonal loadings serves as a parameter to control model complexity and

prevent overfitting. The low-dimensional latent space is optimized sequentially via a deflation operation, yielding the best joint subspace

approximation for both X and Y. Instead of decomposing X and Y individually, higher order singular value decomposition on a newly

defined generalized cross-covariance tensor is employed to optimize the orthogonal loadings. A systematic comparison on both

synthetic data and real-world decoding of 3D movement trajectories from electrocorticogram signals demonstrate the advantages of

HOPLS over the existing methods in terms of better predictive ability, suitability to handle small sample sizes, and robustness to noise.

Index Terms—Multilinear regression, partial least squares, higher order singular value decomposition, constrained block Tucker

decomposition, electrocorticogram, fusion of behavioral and neural data

Ç

1 INTRODUCTION

THE partial least squares (PLS) is a well-established
framework for estimation, regression, and classification

whose objective is to predict a set of dependent variables
(responses) from a set of independent variables (predictors)
through the extraction of a small number of latent variables.
One member of the PLS family is partial least squares
regression (PLSR)—a multivariate method which, in con-
trast to multiple linear regression and principal component
regression (PCR), is proven to be particularly suited to
highly collinear data [1], [2]. To predict response variables
Y from independent variables X, PLS finds a set of latent

variables (also called latent vectors, score vectors, or
components) by projecting both X and Y onto a new
subspace while at the same time maximizing the pairwise
covariance between the latent variables of X and Y. A
standard way to optimize the model parameters is the
nonlinear iterative partial least squares (NIPALS) [3]; for an
overview of PLS and its applications in neuroimaging, see
[4], [5], [6]. There are many variations of the PLS model,
including orthogonal projection on latent structures [7],
biorthogonal PLS (BPLS) [8], recursive PLS [9], nonlinear
PLS [10], [11]. The PLSR is known to exhibit high sensitivity
to noise, a problem that can be attributed to redundant
latent variables [12], whose selection still remains an open
problem [13]. Penalized regression methods are also
popular for simultaneous variable selection and coefficient
estimation which impose, for example, L2 or L1 constraints
on the regression coefficients. Algorithms of this kind are
Ridge regression and Lasso [14]. The recent progress in
sensor technology, biomedicine, and biochemistry has
highlighted the necessity of considering multiple data
streams as multiway data structures [15] for which the
corresponding analysis methods are very naturally based
on tensor decompositions [16], [17], [18]. Although
matricization of a tensor is an alternative way to express
such data, this would result in the “Large p Small n”
problem and also make it difficult to interpret the results as
the physical meaning and multiway data structures would
be lost due to the unfolding operation.

The N-way PLS (N-PLS) decomposes the independent
and dependent data into rank-one tensors, subject to
maximum pairwise covariance of the latent vectors. This
promises enhanced stability, resilience to noise, and
intuitive interpretation of the results [19], [20]. Due to these
desirable properties, N-PLS has found applications in areas
ranging from chemometrics [21], [22], [23] to neuroscience
[24], [25]. A modification of the N-PLS and the multiway
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covariates regression was studied in [26], [27], [28], where
the weight vectors yielding the latent variables are
optimized by the same strategy as in N-PLS, resulting in
better fitness to independent data X while maintaining no
difference in predictive performance. The tensor decom-
position used within N-PLS is canonical decomposition/
parallel factor analysis (CANDECOMP/PARAFAC or CP)
[29], which makes N-PLS inherit both the advantages and
limitations of CP [30]. These limitations are related to poor
fitness ability, computational complexity, and slow conver-
gence when handling multivariate dependent data and
higher order (N > 3) independent data, causing N-PLS to
not be guaranteed to outperform standard PLS [23], [31].

In this paper, we propose a new generalized mutilinear
regression model, called higher order partial least squares
(HOPLS), which makes it possible to predict an Mth-order
tensor Y (M � 3) (or a particular case of two-way matrix Y)
from an Nth-order tensor X (N � 3) by projecting tensor X
onto a low-dimensional common latent subspace. The
latent subspaces are optimized sequentially through simul-
taneous rank-ð1; L2; . . . ; LNÞ approximation of X and rank-
ð1; K2; . . . ; KMÞ approximation of Y (or rank-one approx-
imation in particular case of two-way matrix Y). Due to the
better fitness ability of the orthogonal Tucker model as
compared to CP [16] and the flexibility of the block Tucker
model [32], the analysis and simulations show that HOPLS
proves to be a promising multilinear subspace regression
framework that provides not only an optimal tradeoff
between fitness and model complexity but also enhanced
predictive ability in general. In addition, we develop a new
strategy to find a closed-form solution by employing higher
order singular value decomposition (HOSVD) [33], which
makes the computation more efficient than the classical
iterative procedure.

The paper is structured as follows: In Section 2, an
overview of two-way PLS is presented, and the notation
and notions related to multiway data analysis are intro-
duced. In Section 3, the new multilinear regression model is
proposed, together with the corresponding solutions and
algorithms. Extensive simulations on synthetic data and a
real-world case study on the fusion of behavioral and
neural data are presented in Section 4, followed by
conclusions in Section 5.

2 BACKGROUND AND NOTATION

2.1 Notation and Definitions

Nth-order tensors (multiway arrays) are denoted by

underlined boldface capital letters, matrices (two-way

arrays) by boldface capital letters, and vectors by boldface

lower case letters. The ith entry of a vector x is denoted

by xi, element ði; jÞ of a matrix X is denoted by xij, and

element ði1; i2; . . . ; iNÞ of an Nth-order tensor X 2
IRI1�I2�����IN by xi1i2...iN or ðXÞi1i2...iN

. Indices typically range

from 1 to their capital version, for example, iN ¼ 1; . . . ; IN .

The mode-n matricization of a tensor is denoted by XðnÞ 2
IRIn�I1���In�1Inþ1���IN . The nth factor matrix in a sequence is

denoted by AðnÞ.
The n-mode product of a tensor X 2 IRI1�����In�����IN

and matrix A 2 IRJn�In is denoted by Y ¼ X�n A 2
IRI1�����In�1�Jn�Inþ1�����IN and is defined as

yi1i2...in�1jninþ1...iN ¼
X
in

xi1i2...in...iN ajnin : ð1Þ

The rank-ðR1; R2; :::; RNÞ Tucker model [34] is a tensor
decomposition defined and denoted as follows:

Y � G�1 Að1Þ �2 Að2Þ �3 � � � �N AðNÞ

¼ ½½G; Að1Þ; . . . ;AðNÞ��;
ð2Þ

where G 2 IRR1�R2�::�RN ðRn � InÞ is the core tensor and
AðnÞ 2 IRIn�Rn are the factor matrices. The last term is the
simplified notation, introduced in [35] for the Tucker
operator. When the factor matrices are orthonormal and
the core tensor is all orthogonal, this model is called
HOSVD [33], [35].

The CP model [16], [29], [36], [37], [38] became prominent
in chemistry [28] and is defined as a sum of rank-one tensors:

Y �
XR
r¼1

�r að1Þr 	 að2Þr 	 � � � 	 aðNÞr ; ð3Þ

where the symbol “	” denotes the outer product of vectors,
aðnÞr is the column-r vector of matrix AðnÞ, and �r are
scalars. The CP model can also be represented by (2),
under the condition that the core tensor is superdiagonal,
i.e., R1 ¼ � � � ¼ RN and gi1i2;:::;iN ¼ 0 if in 6¼ im for all n 6¼ m.

The 1-mode product between G 2 IR1�I2�����IN and t 2
IRI1�1 is of size I1 � I2 � � � � � IN , and is defined as

ðG�1 tÞi1i2...iN
¼ g1i2...iN ti1 : ð4Þ

The inner product of two tensors A;B 2 IRI1�����IN is

defined by hA;Bi ¼
P

i1i2:::iN
ai1i2:::iN bi1i2:::iN , and the squared

Frobenius norm by kAk2
F ¼ hA;Ai.

The n-mode cross covariance between an Nth-order
tensor X 2 IRI1�����In�����IN and an Mth-order tensor Y 2
IRJ1�����In�����JM with the same size In on the nth mode,
denoted by

COVfn;ngðX;YÞ 2 IRI1�����In�1�Inþ1�����IN�J1�����Jn�1�Jnþ1�����JM ;

is defined as

C ¼ COVfn;ngðX;YÞ ¼ <X;Y>fn;ng; ð5Þ

where the symbol < 
; 
 >fn;ng represents an n-mode
multiplication between two tensors, and is defined as

ci1;...;in�1;inþ1...iN ;j1;...;jn�1jnþ1...jM

¼
XIn
in¼1

xi1;...;in;...;iN yj1;...;in;...;jM :

As a special case, for a matrix Y 2 IRIn�M , the n-mode cross

covariance between X and Y simplifies as

COVfn;1gðX;YÞ ¼ X�n YT; ð7Þ

under the assumption that n-mode column vectors of X and
columns of Y are mean centered.

2.2 Standard PLS (Two-Way PLS)

The PLSR was originally developed for econometrics by
Wold [3], [39] in order to deal with collinear predictor
variables. The usefulness of PLS in chemical applications was
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illuminated by the group of Wold et al. [40], [41], after some
initial work by Kowalski et al. [42]. Currently, the PLSR is
being widely applied in chemometrics, sensory evaluation,
industrial process control, and, more recently, in the analysis
of functional brain imaging data [43], [44], [45], [46], [47].

The principle behind PLS is to search for a set of latent
vectors by performing a simultaneous decomposition of
X 2 IRI�J and Y 2 IRI�M with the constraint that these
components explain as much as possible of the covariance
between X and Y. It can be formulated as

X ¼ TPT þE ¼
XR
r¼1

trp
T
r þE; ð8Þ

Y ¼ UQT þ F ¼
XR
r¼1

urq
T
r þ F; ð9Þ

where T ¼ ½t1; t2; . . . ; tR� 2 IRI�R consists of R orthonormal

latent variables from X, i.e., TTT ¼ I, and U ¼ ½u1;u2; . . . ;

uR� 2 IRI�R are latent variables from Y having maximum

covariance with T columnwise. The matrices P and Q

represent loadings and E, F are, respectively, the residuals

for X and Y. To find the first set of components, the

classical PLS algorithm is to optimize the two sets of

weights w;q so as to satisfy

max
fw;qg
½wTXTYq�2; s. t. wTw ¼ 1;qTq ¼ 1: ð10Þ

The latent variables are then given by t ¼ Xw=kXwk and
u ¼ Yq. Here, two assumptions are made: 1) The latent
variables ftrgRr¼1 are good predictors of Y; 2) a linear inner
relation between the latent variables t and u exists, i.e.,
U ¼ TDþ Z, where D is a linear relation diagonal matrix
and Z denotes the matrix of Gaussian i.i.d. residuals. The
maximum likelihood estimate of parameters D is
drr ¼ ðtTr trÞ�1tTr ur. Upon combining it with the decomposi-
tion of Y, (9) can be written as

Y ¼ TDQT þ ðZQT þ FÞ ¼ TDQT þ F�; ð11Þ

where F� is the residual matrix. Thus, (11) indicates that the
problem boils down to finding common latent variables T

that explain the variance of both X and Y, as illustrated in
Fig. 1.

3 HOPLS

In the case of a two-way matrix, column rank and row rank
are equal and correspond to the minimal number of rank-one

terms into which the matrix can be decomposed, and thus

the low-rank approximation is equivalent to subspace

approximation. However, for a higher order tensor, these

criteria lead to two typical tensor decompositions (i.e., CP

and Tucker model). The CP decomposes a tensor as a sum

of rank-one tensors defined in (3), which can be considered

as a low-rank approximation, while the Tucker model

decomposes a tensor into a core tensor multiplied by

matrices along each mode (2), which is a rank-(R1; R2; R3)

subspace approximation. Both the CP and Tucker decom-

positions can be regarded as higher order generalizations of

the matrix singular value decomposition (SVD) and

principal component analysis. In fact, CP can be viewed

as a special case of Tucker where the core tensor is

superdiagonal. Block term decompositions unify the Tucker

and CP decompositions into one framework by decompos-

ing a tensor into a sum of rank-(R1; R2; R3) terms [32].
Consider anNth-order independent tensor X 2 IRI1�����IN

and an Mth-order dependent tensor Y 2 IRJ1�����JM , having

the same size on the first mode, i.e., I1 ¼ J1. Our objective is

to find an optimal subspace approximation of X and Y, in

which the latent vectors from X and Y have maximum

pairwise covariance. Considering a linear relation between

the latent vectors, the problem boils down to finding

the common latent subspace which can approximate both

X and Y simultaneously. We first address the general case

of a tensor XðN � 3Þ and a tensor YðM � 3Þ. A particular

case with a tensor XðN � 3Þ and a matrix YðM ¼ 2Þ
is presented separately in Section 3.3, using a slightly

different approach.

3.1 Proposed Model

Applying Tucker decomposition within a PLS framework is

not straightforward, and to that end we propose a novel

block-wise orthogonal Tucker approach to model the data.

More specifically, we assume X is decomposed as a sum of

rank-(1; L2; . . . ; LN ) Tucker blocks, while Y is decomposed

as a sum of rank-(1; K2; . . . ; KM ) Tucker blocks (see Fig. 2),

which can be expressed as
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Fig. 1. The PLS model: Data decomposition as a sum of rank-one
matrices.

Fig. 2. Schematic diagram of the HOPLS model: approximating X as a
sum of rank-ð1; L2; L3Þ tensors. Approximation for Y follows a similar
principle with shared common latent components T.



X ¼
XR
r¼1

Gr�1 tr�2 Pð1Þr �3 � � ��N PðN�1Þ
r þER;

Y ¼
XR
r¼1

Dr�1 tr�2 Qð1Þr �3 � � ��MQðM�1Þ
r þ FR;

ð12Þ

where R is the number of latent vectors, tr 2 IRI1 is the
rth latent vector, fPðnÞr g

N�1
n¼1 2 IRInþ1�Lnþ1 and fQðmÞr g

M�1
m¼1 2

IRJmþ1�Kmþ1 are loading matrices on mode-n and mode-m
respectively, and Gr 2 IR1�L2�����LN and Dr 2 IR1�K2�����KM

are core tensors.
However, the Tucker decompositions in (12) are not

unique [16] due to the permutation, rotation, and scaling
issues. To alleviate this problem, additional constraints
should be imposed such that the core tensors GGr and DDr are
all-orthogonal, a sequence of loading matrices are column-
wise orthonormal, i.e., PðnÞTr PðnÞr ¼ I and QðmÞTr QðmÞr ¼ I, the
latent vector is of length one, i.e., ktrkF ¼ 1. Thus, each term
in (12) is represented as an orthogonal Tucker model,
implying essentially uniqueness as it is subject only to
trivial indeterminacies [32].

By defining a latent matrix T ¼ ½t1; . . . ; tR�, mode-n
loading matrix P

ðnÞ ¼ ½PðnÞ1 ; . . . ;P
ðnÞ
R �, mode-m loading

matrix Q
ðmÞ ¼ ½QðmÞ1 ; . . . ;Q

ðmÞ
R �, and core tensor

G ¼ blockdiagðG1; . . . ;GRÞ 2 IRR�RL2�����RLN ;

D ¼ blockdiagðD1; . . . ;DRÞ 2 IRR�RK2�����RKM ;

the HOPLS model in (12) can be rewritten as

X ¼ G�1 T�2 P
ð1Þ �3 � � � �N P

ðN�1Þ þER;

Y ¼ D�1 T�2 Q
ð1Þ �3 � � � �M Q

ðM�1Þ þ FR;
ð13Þ

where ER and FR are residuals after extracting R
components. The core tensors G and D have a special
block-diagonal structure (see Fig. 2) and their elements
indicate the level of local interactions between the corre-
sponding latent vectors and loading matrices. Note that the
tensor decomposition in (13) is similar to the block term
decomposition discussed in [32], which aims at the
decomposition of only one tensor. However, HOPLS
attempts to find the block Tucker decompositions of two
tensors with blockwise orthogonal constraints, which at the
same time satisfies a certain criteria of sharing the common
latent components on a specific mode.

Benefiting from the advantages of Tucker decomposition
over the CP model [16], HOPLS promises to approximate
data better than N-PLS. Specifically, HOPLS differs sub-
stantially from the N-PLS model in the sense that extraction
of latent components in HOPLS is based on subspace
approximation rather than on low-rank approximation and
the size of loading matrices is controlled by a hyperpara-
meter, providing a tradeoff between fitness and model
complexity. Note that HOPLS simplifies into N-PLS if we
define 8n : fLng ¼ 1 and 8m : fKmg ¼ 1.

3.2 Optimization Criteria and Algorithm

There are two different approaches for extracting the latent
components: sequential and simultaneous methods. A
sequential method extracts one latent component at a time,
deflates the proper tensors, and calculates the next

component from the residuals. In a simultaneous method,
all components are calculated simultaneously by minimiz-
ing a certain criterion. In the following, we employ a
sequential method.

The tensor decompositions in (12) can be represented as
an optimization problem of approximating X and Y by
orthogonal Tucker model while having a common latent
component on a specific mode. If we apply HOSVD
individually on X and Y, the best rank-(1; L2; . . . ; LN )
approximation for X and the best rank-(1; K2; . . . ; KM )
approximation for Y can be obtained, while the common
latent vector tr cannot be ensured. Another way is to find
the best approximation of X by HOSVD first, subsequently,
Y can be approximated by a fixed tr. However, this
procedure, which resembles multiway PCR [28], has the
drawback that the common latent components are not
necessarily predictive for Y.

The optimization of subspace transformation according
to (12) will be formulated as a problem of determining a set
of orthogonormal loadings PðnÞr ;QðmÞr , r ¼ 1; 2; . . . ; R, and
latent vectors tr that satisfies a certain criterion. Since each
term can be optimized sequentially with the same criteria
based on deflation, in the following we shall simplify the
problem to that of finding the first latent vector t and two
sequences of loading matrices PðnÞ and QðmÞ.

To develop a strategy for the simultaneous minimization
of the Frobenius norm of residuals E and F while keeping a
common latent vector t, we first need to introduce the
following basic results.

Proposition 3.1. Given a tensor X 2 IRI1�����IN and column
orthonormal matrices PðnÞ 2 IRInþ1�Lnþ1 , n ¼ 1; . . . ; N � 1,
t 2 IRI1 with ktkF ¼ 1, the least squares (LS) solution to
minGGkX�G�1 t�2 Pð1Þ �3 � � � �N PðN�1Þk2

F is given by
G ¼ X�1 tT �2 Pð1ÞT �3 � � � �N PðN�1ÞT .

Proof. This result is very well known and is widely used in
the literature [16], [33]. A simple proof is based on
writing the mode-1 matricization of tensor X as

Xð1Þ ¼ tGð1ÞðPðN�1Þ � � � � �Pð1ÞÞT þEð1Þ; ð14Þ

where tensor Eð1Þ is the residual and the symbol “�”
denotes the Kronecker product. Since tT t ¼ 1 and
ðPðN�1Þ � � � � �Pð1ÞÞ is column orthonormal, the LS
solution of Gð1Þ with fixed matrices t and PðnÞ is given
by Gð1Þ ¼ tTXð1ÞðPðN�1Þ � � � � �Pð1ÞÞ; writing it in a
tensor form we obtain the desired result. tu

Proposition 3.2. Given a tensor X 2 IRI1�����IN , the following
two constrained optimization problems are equivalent:

1.
minfPðnÞ;t;GgkX�G�1 t�2 Pð1Þ�3 � � ��N PðN�1Þk2

F ,

s.t. matrices PðnÞ are column orthonormal and ktkF ¼ 1.
2. maxfPðnÞ;tgkX�1 tT �2 Pð1ÞT �3 � � ��N PðN�1ÞTk2

F ,
s.t. matrices PðnÞ are column orthonormal and
ktkF ¼ 1.

The proof is available in [16, pp. 477-478].
Assume that the orthonormal matrices PðnÞ;QðmÞ; t are

given, then from Proposition 3.1, the core tensors in (12) can
be computed as
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G ¼ X�1 tT �2 Pð1ÞT �3 � � ��N PðN�1ÞT ;

D ¼ Y�1 tT �2 Qð1ÞT �3 � � ��M QðM�1ÞT :
ð15Þ

According to Proposition 3.2, minimization of kEkF and
kFkF under the orthonormality constraint is equivalent to
maximization of kGkF and kDkF .

However, there is no straightforward tensor decomposi-

tion method to maximize kGkF and kDkF simultaneously

over the factor matrices fPðnÞgN�1
n¼1 , fQðmÞgM�1

m¼1 and a

common latent vector t. To this end, we propose to

maximize a product of norms of two core tensors, i.e.,

maxfkGk2
F � kDk

2
Fg. Since the latent vector t is determined

by PðnÞ;QðmÞ, the first step is to optimize the orthonormal

loadings, then the common latent vectors can be computed

by the fixed loadings.

Proposition 3.3. Let G 2 IR1�L2�����LN and D 2 IR1�K2�����KM ,

then k<G;D>f1;1gk2
F ¼ kGk

2
F � kDk

2
F .

Proof.

k<G;D>f1;1gk2
F ¼ kvecðGÞvecT ðDÞk2

F

¼ traceðvecðDÞvecT ðGÞvecðGÞvecT ðDÞÞ
¼ kvecðGÞk2

F � kvecðDÞk2
F ;

ð16Þ

where vecðGÞ 2 IRL2L3...LN is the vectorization of the
tensor G. tu
From Proposition 3.3, observe that to maximize kGk2

F �
kDk2

F is equivalent to maximizing k<G;D>f1;1gk2
F . Accord-

ing to (15) and tT t ¼ 1, k<G;D>f1;1gk2
F can be expressed as

k½<X;Y>f1;1g; P
ð1ÞT ; . . . ;PðN�1ÞT ;Qð1ÞT ; . . . ;QðM�1ÞT �k2

F :

ð17Þ

Note that this form is quite similar to the optimization
problem for two-way PLS in (10), where the cross-
covariance matrix XTY is replaced by <X;Y>f1;1g.
In addition, the optimization item becomes the norm of
a small tensor in contrast to a scalar in (10). Thus, if we
define <X;Y>f1;1g as a mode-1 cross-covariance tensor
C ¼ COVf1;1gðX;YÞ 2 IRI2�����IN�J2�����JM , the optimization
problem can be finally formulated as

max
PðnÞ;QðmÞf g

k½½C; Pð1ÞT ; . . . ;PðN�1ÞT ;Qð1ÞT ; . . . ;QðM�1ÞT ��k2
F

s:t: PðnÞTPðnÞ ¼ ILnþ1
;QðmÞTQðmÞ ¼ IKmþ1

;

ð18Þ

where PðnÞ, n ¼ 1; . . . ; N � 1, and QðmÞ, m ¼ 1; . . . ;M � 1,
are the parameters to optimize.

Based on Proposition 3.2 and orthogonality of PðnÞ;QðmÞ,
the optimization problem in (18) is equivalent to finding the
best subspace approximation of C as

C � ½½GðCÞ; Pð1Þ; . . . ;PðN�1Þ;Qð1Þ; . . . ;QðM�1Þ��; ð19Þ

which can be obtained by rank-(L2; . . . ; LN;K2; . . . ; KM )

HOSVD on tensor C. Based on Proposition 3.1, the

optimization term in (18) is equivalent to the norm of core

tensor GðCÞ. To achieve this goal, the higher order

orthogonal iteration (HOOI) algorithm [16], [37], which is

known to converge fast, is employed to find the parameters

PðnÞ and QðmÞ by orthogonal Tucker decomposition of C.

Subsequently, based on the estimate of the loadings PðnÞ

and QðmÞ, we can now compute the common latent vector t.

Since our goal is to predict Y from X, similarly to the PLS

method, we need to estimate t from predictors X and also

to estimate the regression coefficient D in order to predict

responses Y. For a given set of loading matrices fPðnÞg, the

latent vector t should explain variance of X as much as

possible, that is,

t ¼ arg min
t

X� ½½G; t;Pð1Þ; . . . ;PðN�1Þ��
�� ��2

F
; ð20Þ

which can be easily achieved by choosing t as the first

leading left singular vector of the matrix ðX�2 Pð1ÞT �3

� � � �N PðN�1ÞT Þð1Þ as used in the HOOI algorithm (see [16],

[35]). Thus, the core tensors G and D are computed by (15).
The above procedure should be carried out repeatedly

using the deflation operation until an appropriate number

of components (i.e., R) are obtained or the norms of

residuals are smaller than a certain threshold. The defla-

tion1 is performed by subtracting from X and Y the

information explained by a rank-(1; L2; . . . ; LN ) tensor bX
and a rank-(1; K2; . . . ; KM ) tensor bY, respectively. The

HOPLS algorithm is outlined in Algorithm 1.

Algorithm 1. The Higher-order Partial Least Squares

(HOPLS) Algorithm for a Tensor X and a Tensor Y

Input: X 2 IRI1�����IN ;Y 2 IRJ1�����JM , N � 3;M � 3 and

I1 ¼ J1.

Number of latent vectors is R and number of loading

vectors are fLngNn¼2 and fKmgMm¼2.

Output: fPðnÞr g; fQðmÞr g; fGrg; fDrg; T
r ¼ 1; . . . ; R; n ¼ 1; . . . ; N � 1; m ¼ 1; . . . ;M � 1.
Initialization: E1  X; F1  Y.

for r ¼ 1 to R do

if kErkF > " and kFrkF > " then

Cr  <Er;Fr>f1;1g;

Rank-ðL2; . . . ; LN;K2; . . . ; KMÞ orthogonal Tucker

decomposition of Cr by HOOI [16] as

Cr � ½½GðCrÞr ; Pð1Þr ; . . . ;PðN�1Þ
r ;Qð1Þr ; . . . ;QðM�1Þ

r ��;
tr  the first leading left singular vector by

SVD
��

Er �2 Pð1ÞTr �3 � � � �N PðN�1ÞT
r

�
ð1Þ
�
;

Gr  ½½Er; t
T
r ;P

ð1ÞT
r ; . . . ;PðN�1ÞT

r ��;
Dr  ½½Fr; t

T
r ;Q

ð1ÞT
r ; . . . ;QðM�1ÞT

r ��;
Deflation:

Erþ1  Er � ½½Gr; tr;P
ð1Þ
r ; . . . ;PðN�1Þ

r ��;
Frþ1  Fr � ½½Dr; tr;Q

ð1Þ
r ; . . . ;QðM�1Þ

r ��;
else

Break;
end if

end for
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1. Note that the latent vectors are not orthogonal in the HOPLS
algorithm, which is related to deflation. The theoretical explanation and
proof are given in the supplemental material, which can be found in the
Computer Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2012.254.



3.3 The Case of the Tensor X and Matrix Y

Consider an Nth-order independent tensor X 2 IRI1�����IN

(N � 3) and a two-way dependent data Y 2 IRI1�M , with
the same sample size I1. The HOPLS models independent
data X as a sum of rank-(1; L2; . . . ; LN ) tensors while
dependent data Y is represented by a sum of rank-one
matrices as

X ¼
XR
r¼1

Gr �1 tr �2 Pð1Þr �3 � � � �N PðN�1Þ
r þER;

Y ¼
XR
r¼1

urq
T
r þ FR;

ð21Þ

where kqrk ¼ 1 and ktrk ¼ 1, PðnÞTr PðnÞr ¼ I; 8n. Similarly to
the standard PLS method, the assumption employed was that
of a linear “inner” relationship between the latent variables tr
and ur, that is, U ¼ TDþ Z, where D is the diagonal matrix,
and Z denotes the Gaussian residuals. A combination with
(21) yields the decomposition of Y in the form

Y ¼ TDQT þ F�R ¼
XR
r¼1

dr trq
T
r þ F�R: ð22Þ

The following proposition states the conditions for the
optimal selection of u given Y and q.

Proposition 3.4. Let Y 2 IRI�M and q 2 IRM is of length one,

then minukY� uqTk2
F is solved by u ¼ Yq. In other words,

a linear combination of the columns of Y using a weighting

vector q of length one is second-order optimal for the

approximation of Y in the LS sense.

Proof. Since q is given and kqk ¼ 1, it is obvious that the
ordinary LS solution to solve the problem is u ¼
YqðqTqÞ�1, and hence, u ¼ Yq gives the best fit of Y for
that q. tu

The sequential deflation type optimization is employed
for the model parameters. Observe that according to
Proposition 3.4, the optimal fit is achieved for u ¼ Yq.
Thus, combining the linear relation between t and u with
the expression for the core tensor G in (15), we can optimize
the parameters of X-loading matrices PðnÞ and Y-loading
vector q via

maxfPðnÞ;qgkX�1 YT �1 qT �2 Pð1ÞT �3 � � � �N PðN�1ÞTk2
F ;

s:t: PðnÞTPðnÞ ¼ I; kqkF ¼ 1:

ð23Þ

This form is similar to (18), but has a different cross
covariance tensor C ¼ X�1 YT defined between a tensor
and a matrix, implying that the problem can be solved by
performing a rank-(1; L2; . . . ; LN ) HOSVD on C, which also
makes it possible to compute the core tensor GðCÞ

corresponding to C.
Subsequently, the latent vector t is estimated from X

using the given loading matrices PðnÞ. The mode-1
matricization of the model for X allows us to write

Xð1Þ ¼ tGð1ÞðPðN�1ÞT � � � � �Pð1ÞÞT þEð1Þ; ð24Þ

where Gð1Þ 2 IR1�L2L3...LN still remains unknown. However,

owing to the linear relationship between the core tensor G

(i.e., ½½X; tT ;Pð1ÞT ; . . . ;PðN�1ÞT ��) and the core tensor GðCÞ

(i.e., ½½C; qT ;Pð1ÞT ; . . . ;PðN�1ÞT ��), so that GðCÞ ¼ dG, an LS

solution for the normalized t, which minimizes the squared

norm of the residual kEð1Þk2
F , can be obtained from

t 
�
X�2 Pð1ÞT �3 � � � �N PðN�1ÞT �

ð1ÞG
ðCÞþ
ð1Þ ; t t=ktkF ;

ð25Þ

where we used the property that PðnÞ are columnwise

orthonormal and the symbol “+” denotes Moore-Penrose

pseudoinverse. Based on the estimated latent vector t of

length one and loadings q, the regression coefficient used to

predict Y is computed as

d ¼ tTu ¼ tTYq: ð26Þ

The procedure for a two-way response matrix is

summarized in Algorithm 2. In this case, the HOPLS model

is shown to unify both the standard PLS and N-PLS, when

the appropriate parameters Ln are selected.2

Algorithm 2. Higher-order Partial Least Squares (HOPLS2)

for a Tensor X and a Matrix Y

Input: X 2 IRI1�I2�����IN ; N � 3 and Y 2 IRI1�M

The Number of latent vectors is R and the number of

loadings are fLngNn¼2.

Output: fPðnÞr g; Q; fGrg; D; T; r ¼ 1; . . . ; R; n ¼ 2; . . . ; N .

Initialization: E1  X;F1  Y.
for r ¼ 1 to R do

if kErkF > " and kFrkF > " then

Cr  Er �1 FT
r ;

Perform rank-ð1; L2; . . . ; LNÞ HOOI on Cr as

Cr � GðCÞr �1 qr �2 Pð1Þr �3 � � � �N PðN�1Þ
r ;

tr  ðEr �2 Pð1Þr �3 � � � �N PðN�1Þ
r Þð1ÞðvecT ðGðCÞr ÞÞ

þ;

tr  tr=ktrkF ;

Gr  ½½Er; t
T
r ;P

ð1ÞT
r ; . . . ;PðN�1ÞT

r ��;
ur  Frqr;

dr  uTr tr;

Deflation:

Erþ1  Er � ½½Gr; tr;P
ð1Þ
r ; . . . ;PðN�1Þ

r ��;
Frþ1  Fr � drtrqTr ;

end if

end for

3.4 Prediction of the Response Variables

Predictions from the new observations Xnew are performed

in two steps: projecting the data to the low-dimensional

latent space based on model parameters Gr, PðnÞr , and

predicting the response data based on latent vectors Tnew

and model parameters QðmÞr , Dr. For simplicity, we use a

matricized form to express the prediction procedure as

Ŷnew
ð1Þ � TnewQ�T ¼ Xnew

ð1Þ WQ�T ; ð27Þ
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2. Explanation and proof are given in the supplement material, available
online.



where W and Q� have R columns represented by

wr ¼
�
PðN�1Þ
r � � � � �Pð1Þr

�
Gþrð1Þ;

q�r ¼ Drð1Þ
�
QðM�1Þ
r � � � � �Qð1Þr

�T
:

ð28Þ

In the particular case of a two-way matrix Y, the prediction
is performed by

Ŷnew � Xnew
ð1Þ WDQT ; ð29Þ

where D is a diagonal matrix whose entries are dr and the
rth column of Q is qr, r ¼ 1; . . . ; R.

3.5 Properties of HOPLS

Robustness to noise. An additional constraint of keeping the
largest fLngNn¼2 loading vectors on each mode is imposed in
HOPLS, resulting in a flexible model that balances the two
objectives of fitness and the significance of associated latent
variables. For instance, a larger Ln may fit X better but
introduces more noise to each latent vector. In contrast,
N-PLS is more robust due to the strong constraint of rank-
one tensor structure while lacking good fit to the data. The
flexibility of HOPLS allows us to adapt the model complex-
ity based on the dataset in hand, providing considerable
prediction ability (see Figs. 4 and 6).

“Large p, Small n” problem. This is particularly important
when the dimension of independent variables is high. In
contrast to PLS, the relatively low dimension of model
parameters that need to be optimized in HOPLS. For
instance, assume that a third-order tensor X has the
dimension of 5� 10� 100, i.e., there are 5 samples and
1,000 features. If we apply PLS on Xð1Þ with size of 5� 1;000,
there are only five samples available to optimize a 1,000-
dimensional loading vector p, resulting in an unreliable
estimate of model parameters. In contrast, HOPLS allows us
to optimize loading vectors having relatively low dimension
on each mode alternately; thus the number of samples is
significantly elevated. For instance, to optimize 10-dimen-
sional loading vectors on the second mode, 500 samples are
available, and to optimize the 100-dimensional loading
vectors on the third mode there are 50 samples. Thus, a
more robust estimate of low-dimensional loading vectors can
be obtained, which is also less prone to overfitting and more
suitable for “Large p, Small n” problem (see Fig. 4).

Ease of interpretation. The loading vectors in PðnÞ reveal
new subspace patterns corresponding to the n-mode
features. However, the loadings from Unfold-PLS are
difficult to interpret since the data structure is destroyed
by the unfolding operation and the dimension of loadings is
relatively high.

Computation. N-PLS is implemented by combining a
NIPALS-like algorithm with the CP decomposition. Instead
of using an iterative algorithm, HOPLS can find the model
parameters using a closed-form solution, i.e., applying
HOSVD on the cross-covariance tensor, resulting in en-
hanced computational efficiency.

Due to the flexibility of HOPLS, the tuning parameters of
Ln and Km controlling the model complexity need to be
selected based on calibration data. Similarly to the para-
meter R, the tuning parameters can be chosen by cross
validation. For simplicity, two alternative assumptions will
been utilized: 1) 8n; 8m;Ln ¼ Km ¼ �, 2) Ln ¼ �Rn,

Km ¼ �Rm, 0 < � � 1, i.e., explaining the same percentage
of the n-mode variance.

4 EXPERIMENTAL RESULTS

In the simulations, HOPLS and N-PLS were used to model
the data in a tensor form, whereas PLS was performed on a
mode-1 matricization of the same tensors. To quantify the
predictability, the index Q2 was defined as Q2 ¼ 1 �
kY� Ŷk2

F=kYk
2
F , where Ŷ denotes the prediction of Y

using a model created from a calibration dataset. Root mean
square errors of prediction (RMSEP) were also used for
evaluation [48].

4.1 Synthetic Data

To quantitatively benchmark our algorithm against the state
of the art, an extensive comparative exploration has been
performed on synthetic datasets to evaluate the prediction
performance under varying conditions with respect to data
structure, noise levels, and ratio of variable dimension to
sample size. For parameter selection, the number of latent
vectors (R) and number of loadings (Ln ¼ Km ¼ �) were
chosen based on five-fold cross validation on the calibration
dataset. To reduce random fluctuations, evaluations were
performed over 50 validation datasets generated repeatedly
according to the same criteria.

4.1.1 Datasets with Matrix Structure

The independent data X and dependent data Y were
generated as

X ¼ TPT þ � E; Y ¼ TQT þ �F; ð30Þ

where latent variables ft;p;qg 
 Nð0; 1Þ, E, F are Gaussian
noises whose level is controlled by the parameter �. Both the
calibration and the validation datasets were generated
according to (30), with the same loadings P;Q, but a
different latent T which follows the same distribution
Nð0; 1Þ. Subsequently, the datasets were reorganized as
Nth-order tensors.

To investigate how the prediction performance is
affected by noise levels and small sample size, fX;Yg 2
IR20�10�10 (Case 1) and fX;Yg 2 IR10�10�10 (Case 2) were
generated under varying noise levels of 10, 5, 0, and -5 dB.
In Case 3, fX;Yg 2 IR10�10�10 were generated with the
loadings P;Q drawn from a uniform distribution Uð0; 1Þ.
The datasets were generated from five latent variables (i.e.,
T has five columns) for all the three cases.

There are two tuning parameters, i.e., number of latent
variables R and number of loadings � for HOPLS, and only
one parameter R for PLS and N-PLS that need to be selected
appropriately. The number of latent variables R is crucial to
prediction performance, resulting in undermodeling when
R was too small, while overfitting easily when R was too
large. The cross validations were performed when R and �
were varying from 1 to 10 with the step length of 1. To
alleviate the computation burden, the procedure was
stopped when the performance starts to decrease with
increasing �. Fig. 3 shows the grid of cross-validation
performance of HOPLS in Case 2 with the optimal
parameters marked by green squares. Observe that the
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optimal � for HOPLS is related to the noise levels, and for
increasing noise levels, the best performance is obtained by
smaller �, implying that only a few significant loadings on
each mode are kept in the latent space. This is expected due
to the fact that the model complexity is controlled by � to
suppress noise. The optimal R and � for all three methods at
different noise levels are shown in Table 1.

After the selection the parameters, HOPLS, N-PLS, and
PLS were retrained on the whole calibration dataset using
the optimal R and �, and were applied to the validation
datasets for evaluation. Fig. 4 illustrates the predictive
performance over 50 validation datasets for the three cases
at four different noise levels. In Case 1, a relatively larger
sample size was available; when SNR ¼ 10 dB, HOPLS
achieved a similar prediction performance to PLS while
outperforming N-PLS. With increasing the noise level in
both the calibration and validation datasets, HOPLS
showed a relatively stable performance, whereas the
performance of PLS decreased significantly. The superiority
of HOPLS was shown clearly with increasing the noise
level. In Case 2, where a smaller sample size was available,
HOPLS exhibited better performance than the other two
models and the superiority of HOPLS was more pro-
nounced at high noise levels, especially for SNR � 5 dB.
These results demonstrated that HOPLS is more robust to
noise in comparison with N-PLS and PLS. If we compare
Case 1 with Case 2 at different noise levels, the results
revealed that the superiority of HOPLS over the other two
methods was enhanced in Case 2, illustrating the advantage

of HOPLS in modeling datasets with small sample size.
Note that N-PLS also showed better performance than PLS
when SNR � 0 dB in Case 2, demonstrating the advantages
of modeling the dataset in a tensor form for small sample
sizes. In Case 3, N-PLS showed much better performance as
compared to its performance in Cases 1 and 2, implying
sensitivity of N-PLS to data distribution. With the increas-
ing noise level, both HOPLS and N-PLS showed enhanced
predictive abilities over PLS.

4.1.2 Datasets with Tensor Structure

Note that the datasets generated by (30) do not originally
possess multiway data structures, although they were
organized in a tensor form; thus the structure information
of data was not important for prediction. We here assume that
HOPLS is more suitable for the datasets which originally have
multiway structure, i.e., information carried by interaction
among each mode are useful for our regression problem. To
verify our assumption, the independent data X and depen-
dent data Y were generated according to the Tucker model
that is regarded as a general model for tensors. The latent
variables t were generated in the same way as described in
Section 4.1.1. A sequence of loadings PðnÞ;QðmÞ and the core
tensors were drawn fromNð0; 1Þ. For the validation dataset,
the latent matrix T was generated from the same distribution
as the calibration dataset, while the core tensors and loadings
were fixed. Similarly to the study in Section 4.1.1, to
investigate how the prediction performance is affected by
noise levels and sample size, fX;Yg 2 IR20�10�10 (Case 1)
and fX;Yg 2 IR10�10�10 (Case 2) were generated under

ZHAO ET AL.: HIGHER ORDER PARTIAL LEAST SQUARES (HOPLS): A GENERALIZED MULTILINEAR REGRESSION METHOD 1667

Fig. 3. Five-fold cross-validation performance of HOPLS at different
noise levels versus the number of latent variables (R) and loadings (�).
The optimal values for these two parameters are marked by green
squares.

TABLE 1
The Selection of Parameters R and � in Case 2

Fig. 4. The prediction performance comparison among HOPLS, N-PLS,
and PLS at different noise levels for three cases. Case 1: fX;Yg 2
IR20�10�10 and fP;Qg 
 Nð0; 1Þ; Case 2: fX;Yg 2 IR10�10�10 and
fP;Qg 
 Nð0; 1Þ; Case 3: fX;Yg 2 IR10�10�10 and fP;Qg 
 Uð0; 1Þ.



noise levels of 10, 5, 0, and -5 dB. The datasets for both cases
were generated from five latent variables.

The optimal parameters of R and � were shown in
Table 2. Observe that the optimal R is smaller with the
increasing noise level for all three methods. The parameter �
in HOPLS was also shown to have a similar behavior. For
more detail, Fig. 5 exhibits the cross-validation performance
grid of HOPLS with respect to R and �. When SNR was
10 dB, the optimal � was 4, while it was 2, 2, and 1 for 5, 0,
and -5 dB, respectively. This indicates that the model
complexity can be adapted to provide a better model when
a specific dataset was given, demonstrating the flexibility of
the HOPLS model.

The prediction performance evaluated over 50 valida-

tion datasets using HOPLS, N-PLS, and PLS with indivi-

dually selected parameters was compared for different

noise levels and different sample sizes (i.e., two cases). As

shown in Fig. 6, for both cases the prediction performance

of HOPLS was better than both N-PLS and PLS at 10 dB,

and the discrepancy among them was enhanced when SNR

changed from 10 to -5 dB. The performance of PLS

decreased significantly with the increasing noise levels

while HOPLS and N-PLS showed relative robustness to

noise and outperformed PLS when SNR � 5 dB, illustrat-

ing the advantages of tensor-based methods with respect to

noisy data. Regarding the small sample size problem, we

found the performances of all three methods were

decreased when comparing Case 1 with Case 2. Observe

that the superiority of HOPLS over N-PLS and PLS was

enhanced in Case 2 as compared to Case 1 at all noise

levels. A comparison of Figs. 6 and 4 shows that the

performances are significantly improved when handling

the datasets having tensor structure by tensor-based

methods (e.g., HOPLS and N-PLS). As for N-PLS, it

outperformed PLS when the datasets have tensor structure

and in the presence of high noise, but it may not perform

well when the datasets have no tensor structure. By

contrast, HOPLS performed well in both cases, in

particular, it outperformed both N-PLS and PLS in critical

cases with high noise and small sample size.3

4.1.3 Comparison on Matrix Response Data

In this simulation, the response data were a two-way
matrix; thus, the HOPLS2 algorithm was used to evaluate
the performance. X 2 IR5�5�5�5 and Y 2 IR5�2 were gener-
ated from a full-rank normal distribution Nð0; 1Þ, which
satisfies Y ¼ Xð1ÞW, where W was also generated from
Nð0; 1Þ. Fig. 7A visualizes the predicted and original data
with the red line indicating the ideal prediction. Observe
that HOPLS was able to predict the validation dataset with
smaller error than PLS and N-PLS. The independent data
and dependent data are visualized in the latent space as
shown in Fig. 7B.

4.2 Decoding of ECoG Signals

In [46], ECoG-based decoding of 3D hand trajectories was
demonstrated by means of classical PLSR4 [49]. The
movement of monkeys was captured by an optical motion
capture system (Vicon Motion Systems, USA). In all
experiments, each monkey wore a custom-made jacket
with reflective markers for motion capture affixed to the
left shoulder, elbows, wrists, and hand; thus the response
data were naturally represented as a third-order tensor
(i.e., time � 3D positions � markers). Although PLS can be
applied to predict the trajectories corresponding to each
marker individually, the structure information among four
markers would be unused. For every point in time of
the movement trajectory, a corresponding ECoG epoch

1668 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 7, JULY 2013

TABLE 2
The Selection of Parameters R and � in Case 2

Fig. 5. Five-fold cross-validation performance of HOPLS at different
noise levels versus the number of latent variables (R) and loadings (�).
The optimal values for these two parameters are marked by green
squares.

Fig. 6. The prediction performance comparison among HOPLS, N-PLS,
and PLS at different noise levels for the two cases (i.e., Case1:
fX;Yg 2 IR20�10�10 and Case 2: fX;Yg 2 IR10�10�10) with different
sample size.

3. The Matlab code and one simulation dataset are available from http://
www.bsp.brain.riken.jp/%7Eqibin/homepage/HOPLS.html.

4. The datasets and more detailed description are freely available from
http://neurotycho.org.



(1 second before the current time point) was extracted and
transformed to the time-frequency domain in order to
construct the predictors. Hence, the independent data are
also naturally represented as a higher order tensor (i.e.,
epoch � channel � time � frequency). In this study, the
proposed HOPLS regression model was applied for
decoding movement trajectories based on ECoG signals to
verify its effectiveness in real-world applications.

The overall scheme of ECoG decoding is illustrated in
Fig. 8. Specifically, ECoG signals were preprocessed by a
band-pass filter with cutoff frequencies at 0.1 and 600 Hz
and a spatial filter with a common average reference.
Motion marker positions were downsampled to 20 Hz. To
represent features related to the movement trajectory from
ECoG signals, the Morlet wavelet transformation at
10 different center frequencies (10-150 Hz, arranged in a
logarithmic scale) was used to obtain the time-frequency
representation. The epochs of 1-second ECoG signals before
every time point of the movement data were extracted and
downsampled to 10 Hz in order to construct the predictors,
which can be represented by channel � time � frequency
(32� 10� 10).

We first applied the HOPLS2 algorithm to predict only
the hand movement trajectory, represented as a matrix Y 2
IRI1�3 (time points � 3D positions ) from a three-order
tensor of ECoG predictors X 2 IRI1�32�100 (epoch � channel
� time-frequency) that was constructed by combining the
time and frequency modes into one mode. The ECoG data
were divided into a calibration dataset (10 minutes) and a
validation dataset (5 minutes). To select the optimal
parameters of Ln and R, the cross validation was applied

on the calibration dataset. Finally, Ln ¼ 10 and R ¼ 23
were selected for the HOPLS model. Likewise, the best
values of R for PLS and N-PLS were 19 and 60,
respectively. The X-latent space is visualized in Fig. 9A,
where each point represents one sample of independent
variables, while the Y-latent space is presented in Fig. 9B,
with each point representing one-dependent sample.
Observe that the distributions of these two latent variable
spaces were quite similar, and the two dominant clusters
are clearly distinguished. The joint distributions between
each tr and ur are depicted in Fig. 9C. Two clusters can be
observed from the first component which might be related
to the “movement” and “nonmovement” behaviors.

Another advantage of HOPLS was better physical
interpretation of the model. To investigate how the spatial,
spectral, and temporal structure of ECoG data were used to
create the regression model, loading vectors can be
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Fig. 8. The scheme for decoding of 3D hand movement trajectories from

ECoG signals.

Fig. 9. Panels (A) and (B) depict data distributions in the X-latent space

T and Y-latent space U, respectively. (C) presents a joint distribution

between X- and Y-latent vectors.

Fig. 10. (A) Spatial loadings Pð1Þr corresponding to the first two latent
components. Each row shows five significant loading vectors. Likewise,
(B) depicts time-frequency loadings Pð2Þr , with the �- and �-bands
exhibiting significant contribution.

Fig. 7. (A) The scatter plot of predicted against actual data for each
model. (B) Data distribution in the latent spaces. Each blue point
denotes one sample of the independent variable, while the red points
denote samples of response variables. (C) depicts the distribution of the
square error of prediction on the validation dataset.



regarded as a subspace basis in spatial and time-frequency
domains, as shown in Fig. 10. With regard to time-
frequency loadings, the �- and �-band activities were most
significant implying the importance of �, �-band activities
for encoding of movements; the duration of the �-band was
longer than that of the �-band, which indicates that hand
movements were related to long history oscillations of the
�-band and short history oscillations of the �-band. These
findings also demonstrated that high gamma band activity
in the premotor cortex is associated with movement
preparation, initiation, and maintenance [50].

From Table 3, observe that the improved prediction
performances were achieved by HOPLS, for all the perfor-
mance metrics. In particular, the results from dataset 1
demonstrated that the improvements by HOPLS over
N-PLS were 0.03 for the correlation coefficient of the
X-position, 0.02 for averaged RMSEP, 0.04 for averaged
Q2, whereas the improvements by HOPLS over PLS were
0.03 for the correlation coefficient of X-position, 0.02 for
averaged RMSEP, and 0.03 for averaged Q2.

Since HOPLS enables us to create a regression model
between two higher order tensors, all trajectories recorded
from shoulder, elbow, wrist, and hand were constructed as
a tensor Y 2 IRI1�3�4 (samples � 3D positions � markers).
To verify the superiority of HOPLS for small sample sizes,
we used 100 second data for calibration and 100 second data
for validation. The resolution of time-frequency representa-
tions was improved to provide more detailed features; thus,
we have a fourth-order tensor X 2 IRI1�32�20�20 (samples �
channels � time � frequency). The prediction performances
from HOPLS, N-PLS, and PLS are shown in Fig. 11,
illustrating the effectiveness of HOPLS when the response
data originally have tensor structure.

Time-frequency features of ECoG epochs for each sample
are extremely overlapped, resulting in a lot of information
redundancy and high computational burden. In addition, it
is generally not necessary to predict behaviors with a high
time resolution. Hence, an additional analysis has been
performed by downsampling motion marker positions at
1 Hz, to ensure that nonoverlapped features were used in
any adjacent samples. The cross-validation performance
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Fig. 11. The prediction performance of 3D trajectories recorded from
shoulder, elbow, wrist, and hand. The optimal R is 16, 28, and 49 for
PLS, N-PLS, and HOPLS, respectively, and � ¼ 5 for HOPLS.

TABLE 3
Comprehensive Comparison of the HOPLS, N-PLS, and PLS for the Prediction of 3D Hand Trajectories

on the Four Datasets Recorded from the Same Monkey Brain

The number of latent vectors for HOPLS, N-PLS, and Unfold-PLS was 23, 60, and 19, respectively.

Fig. 12. The prediction performance of 3D trajectories for shoulder,
elbow, wrist, and hand using nonoverlapped ECoG features.



was evaluated for all the markers from the 10 minute
calibration dataset and the best performance for PLS of
Q2 ¼ 0:19 was obtained using R ¼ 2, for N-PLS it was Q2 ¼
0:22 obtained by R ¼ 5, and for HOPLS it was Q2 ¼ 0:28
obtained by R ¼ 24, � ¼ 5. The prediction performances on
the 5 minute validation dataset are shown in Fig. 12,
implying the significant improvements obtained by HOPLS
over N-PLS and PLS for all four markers. For visualization,
Fig. 13 exhibits the observed and predicted 3D hand
trajectories in the 150 s time window. The video is also
available for visualization of the results.5

5 CONCLUSIONS

The HOPLS has been proposed as a generalized multilinear
regression model. The analysis and simulations have shown
that the advantages of the proposed model include its
robustness to noise and enhanced performance for small
sample sizes. In addition, HOPLS provides an optimal
tradeoff between fitness and overfitting due to the fact that
model complexity can be adapted by a hyperparameter. The
proposed strategy to find a closed-form solution for HOPLS
makes computation more efficient than the existing algo-
rithms. The results for a real-world application in decoding
3D movement trajectories from ECoG signals have also
demonstrated that HOPLS would be a promising multi-
linear subspace regression method.
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