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Multilinear and Nonlinear Generalizations of
Partial Least Squares: An Overview of Recent

Advances
Qibin Zhao, Liqing Zhang and Andrzej Cichocki

Abstract—Partial Least Squares (PLS) is an efficient multivariate statistical regression technique that has proven to be particularly
useful for analysis of highly collinear data. To predict response variables Y from independent variables X, PLS attempts to find a set of
common orthogonal latent variables by projecting both X and Y onto a new subspace respectively. As an increasing interest in multiway
analysis, the extension to multilinear regression model are also developed with the aim to analyzing two multidimensional tensor data.
In this article, we overview the PLS related methods including linear, multilinear and nonlinear variants and discuss the strength of
the algorithms. Since Canonical Correlation Analysis (CCA) is another similar technique with aim to extract the most correlated latent
components between two datasets, we also briefly discuss the extension of CCA to tensor space. Finally, several examples are given
to compare these methods with respect to the regression and classification performance.

Index Terms—Tensor decomposition, Partial least squares (PLS), Canonical Correlation Analysis (CCA), Electrocorticogram (ECoG),
Kernel machines.
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1 INTRODUCTION

The modern machine learning methodologies have been
increasingly used to analyse the relationship between be-
havioral data and neuroscience data, such as functional
magnetic resonance imaging (fMRI), electrocorticogra-
phy (ECoG) and electroencephalography (EEG). Further-
more, due to recent improvements in neuroscience scan-
ning technology, there has been an increasing interest
in the analysis of various factors using cross-domain
multiple sources. Tensors (also called multiway arrays)
have been proven to be a natural and efficient repre-
sentation for modeling such high-dimensional structured
data. In particular, tensor subspace learning methods
have been shown to outperform their corresponding
vector subspace methods, including multilinear princi-
pal component analysis (PCA), multilinear discriminant
analysis, and higher-order partial least squares (HO-
PLS) [1]. Tensor-based techniques allow us to take into
account the structure of data representation in model
learning. The corresponding tensor subspace regression
and classification attracted increasingly interest in com-
puter vision, machine learning and neuroscience fields.

The Partial Least Squares (PLS) is a well-established
framework for estimation, regression and classification,
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whose objective is to predict a set of dependent variables
(responses) from a set of independent variables (predic-
tors) through the extraction of a small number of latent
variables. One member of the PLS family is Partial Least
Squares Regression (PLSR) - a multivariate method, is
proven to be particularly suited for highly collinear data
[2], [3]. There are many variations of PLS model such
as orthogonal projection on latent structures (O-PLS)
[4], Biorthogonal PLS (BPLS) [5], recursive partial least
squares (RPLS) [6], [7], nonlinear PLS [8], [9]. Penalized
regression methods are also popular for simultaneous
variable selection and coefficient estimation by imposing
e.g. L2 or L1 constraints on the regression coefficients.
Algorithms of this kind are ridge regression [10] and
lasso [11].

In this paper, we reviewed the standard PLS, mul-
tilinear PLS and kernel-based tensor PLS methods in
terms of modelling and algorithms. The objective is to
provide a tutorial of the relevant topics by discussing the
strengths of the algorithms. The article is structured as
follows. In Section 2, the notation and notions related
to multi-way data analysis are introduced. In Section
3, the extensions of PLS to tensor space are presented
followed by a brief overview of canonical correlation
analysis (CCA) in Section 4. In Section 5, the relation-
ships among these algorithms are discussed together
with some recent research directions. Simulation results
on real-world applications are presented in Section 6,
followed by conclusions in Section 7.

2 PRELIMINARIES AND NOTATIONS

In this paper, N th-order tensors (multi-way arrays) are
denoted by underlined boldface capital letters, matrices



2

(two-way arrays) by boldface capital letters, and vectors
by boldface lower-case letters. The ith entry of a vector
x is denoted by xi, element (i, j) of a matrix X is
denoted by xij , and element (i1, i2, . . . , iN ) of an N th-
order tensor X ∈ RI1×I2×···×IN by xi1i2...iN or (X)i1i2...iN .
Indices typically range from 1 to their capital version,
e.g., iN = 1, . . . , IN . The mode-n matricization of a
tensor is denoted by X(n) ∈ RIn×I1···In−1In+1···IN . The
nth matrix in a sequence is denoted by a superscript in
parentheses, i.e., A(n).

The n-mode product of a tensor X ∈ RI1×···×In×···×IN
and matrix A ∈ RJn×In is denoted by Y = X ×n A ∈
RI1×···×In−1×Jn×In+1×···×IN and is defined as:

yi1i2...in−1jnin+1...iN =
∑
in

xi1i2...in...iNajnin . (1)

while the n-mode product of N th-order tensor X and a
vector a ∈ RIn is an N − 1th tensor denoted by Y =
X×̄na ∈ RI1×···×In−1×In+1×···×IN and defined by

yi1i2···in−1in+1···iN =
∑
in

xi1i2···in···iNain (2)

The rank-(R1, R2, ..., RN ) Tucker model [12] is a tensor
decomposition defined as follows:

Y ≈ G×1 A(1) ×2 A(2) ×3 · · · ×N A(N), (3)

where G ∈ RR1×R2×..×RN is the core tensor and A(n) =
[a

(n)
1 a

(n)
2 · · ·a

(n)
Rn

] ∈ RIn×Rn are the factor matrices. When
the factor matrices are restricted to be orthonormal this
model is called multilinear singular value decomposition
(MSVD). A useful property of MSVD is that it can
be computed directly from data by applying SVD to
each mode of the tensor, while keeping the left singular
matrices as the factor matrices. The core tensor can then
be computed as G = Y×1A(1)T×2A(2)T×3 · · ·×NA(N)T .

The canonical polyadic decomposition (CPD) [13],
[14], [15], [16], [17] became prominent in Chemistry [18]
and is defined as a sum of rank-one tensors:

Y ≈
R∑
r=1

λra
(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r , (4)

where the symbol '◦' denotes the outer product of vec-
tors, a

(n)
r is the column-r vector of matrix A(n), and

λr are scalars. This notation suggests the definition of
tensor rank: we say that a tensor is rank-R if the minimal
value of r in (4), providing a perfect fit to Y, is R.
The CP model can also be represented by (3), under
the condition that the core tensor is super-diagonal, i.e.,
R = R1 = R2 = · · · = RN and gr1r2,...,rN = 0 if rn 6= rm
for all n 6= m.

The inner product of two tensors A,B ∈ RI1×I2...×IN is
defined by 〈A,B〉 =

∑
i1i2...iN

ai1i2...iN bi1i2...iN , and the
squared Frobenius norm by ‖A‖2F = 〈A,A〉.

The n-mode cross-covariance between an N th-order
tensor X ∈ RI1×···×In×···×IN and an M th-order ten-
sor Y ∈ RJ1×···×In×···×JM with the same size In
on the nth-mode, denoted by COV{n;n}(X,Y) ∈

RI1×···×In−1×In+1×···×IN×J1×···×Jn−1×Jn+1×···×JM , is de-
fined as

C = COV{n;n}(X,Y) =< X,Y >{n;n}, (5)

where the symbol < •, • >{n;n} represents an n-mode
multiplication between two tensors, and is defined as

ci1,...,in−1,in+1...iN ,j1,...,jn−1jn+1...jM =
In∑
in=1

xi1,...,in,...,iN yj1,...,in,...,jM . (6)

3 PARTIAL LEAST SQUARES
3.1 Linear PLS
The PLS regression was originally developed for econo-
metrics by H. Wold [19], [20] in order to deal with
collinear predictor variables. For this case, the ordinary
least squares regression fails due to the ill-conditioning
of data matrices. The usefulness of PLS in chemical
applications was illuminated by the group of S. Wold
[21], [22], after some initial work by Kowalski et al. [23].
Currently, the PLS regression is being widely applied
in chemometrics, sensory evaluation, industrial process
control, and more recently, in the analysis of functional
brain imaging data [24], [25], [26], [27], [28].

Fig. 1. The PLS model: data decomposition as a sum of rank-
one matrices.

The principle behind PLS is to search for a set of latent
vectors by performing a simultaneous decomposition of
X ∈ RI×J and Y ∈ RI×M with the constraint that
these components explain as much as possible of the
covariance between X and Y. As illustrated in Fig. 1,
this can be formulated as

X = TPT + E =

R∑
r=1

trp
T
r + E, (7)

Y = UCT + F =

R∑
r=1

urc
T
r + F, (8)

where T = [t1, t2, . . . , tR] ∈ RI×R consists of R orthonor-
mal latent variables from X, and U = [u1,u2, . . . ,uR] ∈
RI×R are latent variables from Y having maximum
covariance with T column-wise. The matrices P and C
represent loadings and E,F are respectively the resid-
uals for X and Y. In order to find the first set of
components, the classical PLS algorithm is to optimize
the two sets of weights w, c so as to satisfy

max
{w,c}

[wTXTYc]2, s. t. wTw = 1, cT c = 1. (9)
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The latent variables are then given by t = Xw/‖Xw‖
and u = Yc. Here, two assumptions are made: i) the
latent variables {tr}Rr=1 are good predictors of Y; ii)
a linear inner relation between the latent variables t
and u exists; i.e., U = TD + Z where D is a linear
relation diagonal matrix and Z denotes the matrix of
Gaussian i.i.d. residuals. Upon combining it with the
decomposition of Y, (8) can be written as

Y = TDCT + (ZCT + F) = TDCT + F∗, (10)

where F∗ is the residual matrix. Thus (10) indicates
that the problem boils down to finding common latent
variables T that explain the variance of both X and Y.

3.2 Multilinear PLS
The N -way PLS (N-PLS), illustrated in Fig. 2, was devel-
oped by Bro [29] as a multi-way extension of standard
PLS, which decomposes a multi-way tensor X based on
the CP model, to predict response variables Y. For a
three-way tensor X ∈ RI×J×K and a multivariate matrix
Y ∈ RI×M with elements xijk and yim respectively,
X is decomposed into one latent vector t ∈ RI×1 and
two loading vectors p ∈ RJ×1 and q ∈ RK×1, i.e., one
loading vector per mode. The decomposition model for
X is given by

X =

R∑
r=1

tr ◦ pr ◦ qr + E, Y =

R∑
r=1

drr trc
T
r + F (11)

and the objective is to find the vectors pr,qr and cr that
satisfy

{pr,qr, cr} = arg max
pr,qr,cr

[cov(tr,ur)],

s. t. tr = X×̄1pr×̄2qr,ur = Ycr

and ‖pr‖22 = ‖qr‖22 = ‖cr‖22 = 1. (12)

Fig. 2. The N-PLS model: data decomposition as a sum of rank-
one tensors and a sum of rank-one matrices.

3.3 Higher-order PLS (HOPLS)
Another multilinear regression model, termed higher-
order partial least squares (HOPLS) [1], [30], operates by
modeling N th-order independent tensor X ∈ RI1×···×IN
and an M th-order dependent tensor Y ∈ RJ1×···×JM ,
having the same size on the first mode, i.e., I1 = J1
(see Fig. 3). This allows us to find the optimal subspace
approximation of X, in which the independent and

Fig. 3. Schematic diagram of the HOPLS model: approximating
X as a sum of rank-(1, L2, L3) tensors. Approximation for Y fol-
lows a similar principle with shared common latent components
T.

dependent variables share a common set of latent vectors
on one specific mode (i.e., samples mode). More specif-
ically, we assume X is decomposed as a sum of rank-
(1, L2, . . . , LN ) Tucker blocks, while Y is decomposed as
a sum of rank-(1,K2, . . . ,KM ) Tucker blocks, which can
be expressed as

X =

R∑
r=1

Gr×1 tr×2 P(1)
r ×3 · · ·×N P(N−1)

r +ER,

Y =

R∑
r=1

Dr×1 tr×2 Q(1)
r ×3 · · ·×MQ(M−1)

r +FR,

(13)

where R is the number of latent vectors, tr ∈ RI1

is the r-th latent vector,
{

P
(n)
r

}N−1
n=1

∈ RIn+1×Ln+1

and
{

Q
(m)
r

}M−1
m=1

∈ RJm+1×Km+1 are loading matri-
ces on mode-n and mode-m respectively, and Gr ∈
R1×L2×···×LN and Dr ∈ R1×K2×···×KM are core tensors.
By defining a latent matrix T = [t1, . . . , tR], mode-n
loading matrix P

(n)
= [P

(n)
1 , . . . ,P

(n)
R ], mode-m load-

ing matrix Q
(m)

= [Q
(m)
1 , . . . ,Q

(m)
R ] and core tensor

G = blockdiag(G1, . . . ,GR) ∈ RR×RL2×···×RLN , D =
blockdiag(D1, . . . ,DR) ∈ RR×RK2×···×RKM , the HOPLS
model in (13) can be rewritten as

X = G×1 T×2 P
(1) ×3 · · · ×N P

(N−1)
+ ER,

Y = D×1 T×2 Q
(1) ×3 · · · ×M Q

(M−1)
+ FR,

(14)

where ER and FR are residuals after extracting R com-
ponents. The core tensors G and D have a special block-
diagonal structure (see Fig. 3) and their elements indicate
the level of local interactions between the corresponding
latent vectors and loading matrices.

Benefiting from the advantages of Tucker decompo-
sition over the CP model [17], HOPLS promises to
approximate data better than N-PLS. Specifically, HOPLS
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differs substantially from the N-PLS model in the sense
that the size of loading matrices is controlled by a
hyperparameter, providing a tradeoff between fitness
and model complexity. Note that HOPLS simplifies into
N-PLS if we define ∀n : {Ln} = 1 and ∀m : {Km} = 1.

The optimization of subspace transformation accord-
ing to (13) will be formulated as a problem of de-
termining a set of orthogonormal loadings and latent
vectors. Since each term can be optimized sequen-
tially with the same criteria based on deflation, in the
following, we shall simplify the problem to that of
finding the first latent vector t and two sequences of
loading matrices P(n) and Q(m). Finally, if we define
< X,Y >{1;1} as a mode-1 cross-covariance tensor C =
COV{1;1}(X,Y) ∈ RI2×···×IN×J2×···×JM , the optimiza-
tion problem can be finally formulated as

max
{P(n),Q(m)}

∥∥∥[[C; P(1)T ,. . . ,P(N−1)T ,Q(1)T ,. . .,Q(M−1)T ]]
∥∥∥2
F

s. t. P(n)TP(n) = ILn+1
,Q(m)TQ(m) = IKm+1

, (15)

where P(n), n = 1, . . . , N −1 and Q(m),m = 1, . . . ,M −1
are the parameters to optimize. This is equivalent to
find the best subspace approximation of C which can be
obtained by rank-(L2, . . . , LN ,K2, . . . ,KM ) HOSVD on
tensor C. To achieve this goal, the higher-order orthogo-
nal iteration (HOOI) algorithm [15], [17], which is known
to converge fast, is employed to find the parameters P(n)

and Q(m) by orthogonal Tucker decomposition of C.

3.4 Nonlinear tensor PLS

In this section, we introduce kernel-based tensor PLS
(KTPLS) [31] as an extension of HOPLS to kernel spaces.
Given N pairs of tensor observations {(X(n),Y(n))}Nn=1,
X(n) denotes an M th-order independent tensor and
Y(n) denotes an Lth-order dependent tensor, which can
be concatenated to form an (M + 1)th-order tensor
X ∈ RN×I1×···×IM and (L + 1)th-order tensor Y ∈
RN×J1×···×JL . We then let X, Y to be mapped into the
Hilbert space by φ : X(n) 7−→ φ

(
X(n)

)
. For simplicity,

we denote φ(X) by Φ and φ(Y) by Ψ. KTPLS seeks
tensor decompositions such that

Φ = GX ×1 T×2 P(1) · · · ×M+1 P(M) + EX,

Ψ = GY ×1 U×2 Q(1) · · · ×L+1 Q(L) + EY,

U = TD + EU ,

(16)

Since GX ×2 P(1) · · · ×M+1 P(M) denoted by G̃X and
GY ×2 Q(1) · · · ×L+1 Q(L) denoted by G̃Y can be rep-
resented as a linear combination of {φ(X(n))} and
{φ(Y(n))} respectively, i.e., G̃X = Φ ×1 TT and G̃Y =

Ψ ×1 UT , we only need to explicitly find the latent
vectors of T = [t1, . . . , tR] and U = [u1, . . . ,uR] with
pairwise maximum covariance through solving an opti-

mization problem sequentially, which is expressed by

max
{w(m)

r ,v
(l)
r }

[cov(tr,ur)]
2,

where tr =Φ×̄2w
(1)
r · · · ×̄M+1w

(M)
r ,

ur =Ψ×̄2v
(1)
r · · · ×̄L+1v

(L)
r .

(17)

Rewriting (17) in matrix form, it becomes tr =
Φ(1)w̃r,ur = Ψ(1)ṽr, which can be solved by
kernelized version of the eigenvalue problem, i.e.,
Φ(1)Φ

T
(1)Ψ(1)Ψ

T
(1)tr = λtr and ur = Ψ(1)Ψ

T
(1)tr [8]. Note

that Φ(1)Φ
T
(1) contains only the inner products between

vectorized input tensors, which can be replaced by an
N×N kernel matrix KX. Thus, we have KXKYtr = λtr
and ur = KYtr. In order to take the multilinear structure
into account, the kernel matrices should be computed us-
ing the kernel functions for tensors that will be discussed
in the next section, i.e., (KX)nn′ = k

(
X(n),X(n′)

)
and

(KY)nn′ = k
(
Y(n),Y(n′)

)
. Finally, the prediction of a

novel data point X∗ can be achieved by

y∗T = k∗TU(TTKXU)−1TTY(1), (18)

where (k∗)n = k
(
X(n),X∗

)
and y∗T should be reorga-

nized to tensor form Y∗.
The significance of (18) can be explained in several

ways. First, it is a linear combination of N observations
{Y(n)} with the coefficients k∗TU(TTKXU)−1TT ; the
second interpretation is that y∗j is predicted by a lin-
ear combination of N kernels, each one centered on a
training point, i.e., y∗j =

∑N
n=1 αnk

(
X(n),X∗

)
, where

αn =
(
U(TTKXU)−1TTY(1)

)
nj

. Finally, a third inter-
pretation is that t∗ is obtained by nonlinearly projecting
X∗ onto the latent space, i.e., t∗T = k∗TU(TTKXU)−1,
then y∗T is predicted by a linear regression against t∗,
i.e., y∗T = t∗TC where regression coefficient is C =
TTY(1). In general, to ensure the strict linear relationship
between latent vectors and output in original spaces, the
kernel function on data Y is restricted to linear kernels.

3.5 Kernel function for tensors
The kernels are considered as defining a topology imply-
ing the a priori knowledge about invariance in the input
space. In this section, we discuss the kernels for tensor-
valued inputs, which can take multiway structure into
account for similarity measures. There are some valid
reproducing kernels toward a straightforward general-
ization to M th-order tensors, such as the kernel functions
k : X×X→ R given as

Linear kernel: k(X,X′) = 〈vec(X),vec(X′)〉,

Gaussian-RBF kernel: k(X,X′) = exp
(
− 1

2β2
‖X−X′‖2F

)
.

(19)

In order to define the similarity measure that directly
exploits multilinear algebraic structure of input ten-
sors, Signoretto et al. [32], [33] proposed a tensorial
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kernel exploiting algebraic geometry of spaces of ten-
sors and a similarity measure between the different
subspaces spanned by higher-order tensors. A prod-
uct kernel can be defined by M factor kernels, e.g.,
k(X,X′) =

∏M
m=1 k

(
X(m),X

′
(m)

)
, where each factor

kernel represents a similarity measure between mode-m
matricization of two tensors.

In [31], a family of probabilistic product kernels for
tensors are proposed based on generative models. More
specifically, an M th-order tensor observations are first
mapped into an M -dimensional model space, then in-
formation divergence is applied as a similarity measure
in the model space. The probabilistic tensor kernels can
deal with multiway data with missing values and vari-
able length. Since it provides a way to model one tensor
from M different viewpoints that correspond to different
low-dimensional vector space, multiway relations can
be captured in the similarity measure. The similarity
measure between two tensors X and X′ in mode-m is
defined as

Sm(X||X′) = D
(
p(x|ΩX

m)‖q(x|ΩX′

m )
)
, (20)

where p, q represent probability density function for
X and X′ respectively and D(p||q) is an information
divergence between two distributions. Ω

X
m denotes the

parameters of mode-m distribution of X, which depends
on the model assumption. For simplicity, we assume
Gaussian models for all modes of X, then Ω includes
mean values and covariance matrix of that distribution.
One popular information divergence is the symmetric
Kullback-Leibler (sKL) divergence [34] Another possibility
is the Jensen-Shannon (JS) divergence [35], [36] expressed
by

DJS(p||q) =
1

2
KL(p||r) +

1

2
KL(q||r), (21)

where KL(·||·) denotes Kullback-Leibler divergence and
r(x) = p(x)+q(x)

2 . Finally, a probabilistic product kernel
for tensors is defined as

k(X,X′) = α2
M∏
m=1

exp
(
− 1

2β2
m

Sm(X||X′)
)
, (22)

where α denotes a magnitude parameter and
[β1, . . . , βM ] are length-scales parameters. As isotropic
RBF kernel, {βm}Mm=1 in (22) could also be the same.
It can be shown that both sKL and JS divergences are
non-negative and equal to zero when p(x) = q(x), while
they do not fulfill the triangle inequality. However, it
has been proven in [35], [36] that [DsKL(p||q)] 1

2 and
[DJS(p||q)] 1

2 fulfill the triangle inequality thus is a
metric, implying that tensor kernel defined in (22) is
a metric kernel. In practice, because of the absence
of closed-form solutions for probabilistic kernels, one
may end up with a kernel matrix that is not positive-
definite due to inaccuracies in the probabilistic density
estimation.

An intuitive interpretation of kernel function in (22)
is that M th-order tensors are assumed to be generated

from M generative models, the similarity of these mod-
els measured by information divergence are employed
to provide a multiple kernel with well conditions. This
kernel can effectively capture the statistical properties
of tensors, which might be a powerful tool for mul-
tidimensional structured data analysis, such as video
classification and multichannel ECoG feature extractions.

4 CANONICAL CORRELATION ANALYSIS

Canonical correlation analysis (CCA) is a method similar
to PLS for determining the linear relationships between
two multivatiates. However, unlike PLS, CCA is to max-
imize the mutual correlations in latent space. As a result,
CCA has been successfully applied in various practical
contexts, such as supervised dimensionality reduction,
multi-view learning, and multilabel classification [37].
Kernel canonical correlation analysis (KCCA) has been
proposed in [38], [39], while multilinear extension of
CCA for third-order tensors was proposed in [40].

Let X ∈ RI×J and Y ∈ RI×M be two datasets of I
observations, the linear CCA seeks two projections w,v
such that

max
{w,v}

wTXTYv√
(wTXTXw)(vTYTYv)

. (23)

When two datasets are represented by N th-order ten-
sor X ∈ RI1,×I2···IN and M th-order tensor Y ∈
RK1,×K2···KM , with I1 = K1 denotes the number of
samples, the tensor CCA seeks multilinear projections of
two datasets respectively, resulting in that the correlation
coefficient between them are maximised, that is

max
{w(n),v(m)}

〈X×̄n 6=1w
(n),Y×̄m6=1v

(m)〉,

subject to 〈X×̄n 6=1w
(n),X×̄n 6=1w

(n)〉 = 1,

〈Y×̄m6=1v
(m),Y×̄m6=1v

(m)〉 = 1,

(24)

where ×̄n 6=1 denotes the multiplications of a tensor and
a set of vectors in all mode-n except mode-1, resulting
in a vector with the same length to mode-1 size of the
original tensor.

KCCA is an nonlinear generalization of linear CCA
using kernel trick while the kernel-based tensor CCA
(KTCCA) [31] is a multiway generalization of KCCA. By
employing the kernel techniques, these two algorithms
can be formulated in a similar form. More specifically,
given N observations of two random tensors denoted as
X and Y, the objective of KTCCA are given by

max
{w,v}

wTKXKYv√
(wTK2

Xw)(vTK2
Yv)

, (25)

where the kernel matrices KX,KY are computed using
the kernel function for tensorial data as defined in (22),
{w,v} ∈ RN are weight coefficients in kernel space
corresponding to X and Y, respectively. The solution
can be obtained by solving w = 1

λK−1X KYv, K2
Yv −

λ2K2
Yv = 0, which has the same form as KCCA [39].
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5 DISCUSSIONS

The standard PLS/CCA are well-known techniques for
analyzing the linear relationships between two sets of
multivariate data. Both of them can be used for feature
extraction, regression and classification problems. How-
ever, when the original data can be represented naturally
by multiway tensors such as multidimensional struc-
tured data, the multilinear generalization of PLS/CCA
are more appropriate due to the power of effectively
capturing the underlying interactions between different
modes. From the optimization point of view, the mul-
tilinear versions of PLS/CCA are considered as con-
strained variants in the sense that the projection vectors
can be approximated by rank-one tensors. For instance,
given X,Y with the same size of 10×10×10, if we apply
standard two-way PLS/CCA on the unfolding of origi-
nal tensors, i.e., X,Y of size 10×100, the linear transfor-
mations represented by w ∈ R100,v ∈ R100 are required
to be optimized, while tensor PLS/CCA seek the multi-
linear transformations represented by w(1),w(2) ∈ R10

and v(1),v(2) ∈ R10 which is equivalent to applying
linear transformation on unfolded X by w(1) ⊗ w(2).
Therefore, the tensor PLS/CCA have some advantages
on structured data analysis, and are less prone to over-
fitting problem when number of samples are relative
small, because the model complexity is controlled to
some extent by the rank-one approximation of projection
vectors. However, if the original data does not contain
the multiway structure, tensor PLS/CCA will obtain a
model with higher fitting errors. Linear PLS/CCA are
severely limited as they can only be applied to data
that is linearly correlated while real world applications
usually can not be expressed by a linear combinations
of the input attributes, whereas nonlinear generalization
of PLS and CCA are more powerful in this case. If
we consider the tensor representations of original data,
the recently proposed kernel-based tensor PLS/CCA are
very powerful due to the ability of taking into account
both the structure information and nonlinear relation-
ships among the datasets.

There are many other variants of PLS/CCA, such
as the extension to multiple datasets by multi-block
PLS [41] and multi-view CCA [42]. To control the model
complexity and prevent overfitting, the sparsity con-
straint can be enforced to obtain the latent components
and to perform variable selection simultaneously [43].
On the other hand, PLS and CCA can be interpreted as
Gaussian latent variable model under the probabilistic
framework, such as probabilistic CCA [44] and proba-
blistic PLSR [45], which results in the possibility of the
fully Bayesian treatment of the model [46]. In addition,
the sparse and robust versions of the probabilistic CCA
model are introduced by [47], [48]. In our future work,
the models and algorithms of tensor PLS and CCA under
the Bayesian framework will be considered.

Fig. 4. The scheme for decoding of 3D hand movement trajec-
tories from ECoG signals.

6 EXPERIMENTAL RESULTS

6.1 Decoding of ECoG signals
ECoG-based decoding of 3D hand trajectories was
demonstrated by means of classical PLS regression [27].
For the same datasets1, in this study, several methods
were applied for the prediction of limb movement tra-
jectories in a 3D space based on ECoG signals recorded
from monkey brains. The overall scheme of ECoG de-
coding is illustrated in Fig. 4. Specifically, 32 channels
of ECoG signals were preprocessed by a band-pass filter
from 0.1 to 600Hz and a spatial filter by common average
reference. Motion marker locations were down-sampled
to 20Hz. In order to extract features related to the 3D
trajectory from ECoG signals, the Morlet wavelet trans-
formation at 10 different center frequencies (10-150Hz,
arranged in a logarithmic scale) was used to obtain the
time-frequency representation. For each sample point of
3D trajectories, the most recent 1 second ECoG signals
were transformed to time-frequency domains by means
of the wavelet transformation. Finally, a third-order
tensor of ECoG features X (time samples × channels
× time-frequency) was formed as an predictors. The
movements of a monkey were captured by an optical
motion capture system with reflective markers affixed
to the left shoulder, elbows, wrists and hand, thus the
responses were represented as a 3rd-order tensor Y (i.e.,
samples × 3D positions × markers).

The advantage of HOPLS was better physical inter-
pretation of the model. To investigate how the spatial,
spectral, and temporal structure of ECoG data were
used to create the regression model, loading vectors can
be regarded as a subspace basis in spatial and time-
frequency domains and latent variables were viewed as
the coefficients. Fig. 5(A)(B) demonstrate spatial loadings
P and time-frequency loadings Q employed in the de-
coding models for predicting hand trajectories. This way,
we obtained a specific spatial distribution for each latent
vector, which was valuable for investigating channel
positions related to specific behaviors. With regard to
time-frequency loadings, the β- and γ-band activities
were most significant for encoding of movements; the
duration of β-band was longer than γ-band. These find-
ings also demonstrated that a high gamma band activity
in the premotor cortex is associated with movement
preparation, initiation and maintenance [50], illustrating

1. The datasets are freely available from neurotycho.org [49].
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Fig. 5. Visualization of HOPLS model for X decomposi-
tion. (A) Spatial loadings P

(1)
r corresponding to the first

5 latent vectors. Each row shows 5 significant loading
vectors. Likewise, (B) depicts time-frequency loadings
P

(2)
r , with β and γ-band exhibiting significant contribution.

the effectiveness of HOPLS in interpreting the neuro-
physiological principles of movements encoding.

The dataset is divided into training set (10 minutes)
and test set (5 minutes) and the selection of tuning
parameters, such as number of latent components for
HOPLS, PLS and kernel parameters for KTPLS, is per-
formed by cross-validation on the training data. The
predictive performances for the test set are shown in
Fig. 6 demonstrating the superiority of KTPLS over
linear PLS and HOPLS.

6.2 Video classification using KTCCA

Human action recognition in videos is of high interest
for a variety of applications such as video surveillance,
human-computer interface and video retrieval, where
the most competing methods are based on motion es-
timation [51], local space-time interest points and visual
code words [52], [53], [54], multiple classifiers [55], [56],
sparse representation [57] and multiway tensor meth-
ods [40], [58]. Tensor representation enables us to directly
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Fig. 6. The prediction performance for 3D movement tra-
jectories recorded from Elbow, Wrist and Hand using four
regression models including Linear PLS (LP), HOPLS
(HP), KTPLS with Chordal distance based kernel (KT-
1) and KTPLS with KL divergence based kernel (KT-2).
The correlation coefficients r2 between prediction and
real data shown in (a) indicates that the best performance
is obtained by TK-1 while evaluation of Q2 = 1 − ‖ŷ −
y‖2/‖y‖2 showed in (b) indicates that TK-2 outperforms
the other methods.

Fig. 7. Three examples of video sequences in tensor form
for H-W, H-C and walking actions.

analyze 3D video volume and encode global space-time
structure information.

The effectiveness of KTCCA is demonstrated by video
classifications on the KTH human action database2 that
contains six types (walking (W), running (R), jogging
(J), boxing (B), hand-waving (H-W), and hand-clapping
(H-C)) of human actions performed by 25 persons in
four different scenarios (outdoors, outdoors with scale
variation, outdoors with different clothes, and indoors).
There are 600 video sequences in the dataset and three
examples of video sequences represented as tensors are
shown in Fig. 7. The space-time alignment on the human
action is performed manually, then all video sequences
are rescaled to 20×20×32. The dataset is divided with
respect to the subjects into a training set (16 persons) and

2. http://www.nada.kth.se/cvap/actions/
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TABLE 1
Confusion matrix for human action classification. The last

column represents individual accuracy for each class.

Walk Run Jog Box H-C H-W Acc.

Walk 36 0 0 0 0 0 100%

Run 0 35 1 0 0 0 97%

Jog 0 0 36 0 0 0 100%

Box 0 0 0 36 0 0 100%

H-C 0 0 0 0 36 0 100%

H-W 0 0 0 0 3 33 92%

a test set (9 persons). Each data example i.e., a video se-
quence, is represented by a 3rd-order tensor, and KTCCA
is performed to find the shared latent space between
training data and the corresponding class membership.
The test data are then projected onto the latent space
by model parameters learned from the training data, to
obtain the discriminative components. Fig. 8 shows the
test data in two-dimensional latent space, and six classes
are clearly separated in the latent space indicating that
KTCCA is able to capture the discriminative components
very well. A simple k-nearest neighbor classifier (k-
NN) is applied on lower-dimensional features for action
classification and the confusion matrices on test set are
shown in Table 1, in which rows correspond to the
ground truth, and columns correspond to the classifi-
cation results.

−0.1 −0.05 0 0.05 0.1 0.15
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

 

 
W R J B H−C H−W

Fig. 8. Visualization of test dataset in two-dimensional
KTCCA latent space. Observe that the first two compo-
nents obtained from KTCCA are discriminative for action
classification.

In addition, the leave-one-out performance is evalu-
ated for comparison with the state-of-the-art methods on
the KTH dataset. As shown in Table 2, KTCCA achieves
the highest overall classification accuracy followed by
product manifold (PM) [58], tensor CCA (TCCA) [40]
and boosted exemplar learning (BEL) [56].
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7 CONCLUSIONS

In this paper, we reviewed PLS/CCA related meth-
ods including linear, multilinear, and nonlinear vari-
ants, especially focusing on tensor-based approaches. In
addition, some recent advances about kernelization of
tensor-based models are also discussed with supported
experimental results. These methods may have some ad-
vantages over the traditional linear/nonlinear methods
using matrix algebra in terms of the multidimensional
structured data analysis. Several illustrative examples
were provided to compare the performance with the
state-of-the-art of methods that are relevant to this topic.
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