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T
ensors (also called multiway arrays) are a generaliza-
tion of vectors and matrices to higher dimensions 
based on multilinear algebra. The development of 
theory and algorithms for tensor decompositions 
(factorizations) has been an active area of study 

within the past decade, e.g., [1] and [2]. These methods have been 
successfully applied to many problems in unsupervised learning 
and exploratory data analysis. Multiway analysis enables one to 
effectively capture the multilinear structure of the data, which is 
usually available as a priori information about the data. Hence, it 
might provide advantages over matrix factorizations by enabling 
one to more effectively use the underlying structure of the data. 
Besides unsupervised tensor decompositions, supervised tensor 
subspace regression and classification formulations have been 
also successfully applied to a variety of fields including chemo-
metrics, signal processing, computer vision, and neuroscience.

There is a growing need for the development and application 
of machine-learning methods to analyze multidimensional 
data, such as functional magnetic resonance (fMRI), electrocor-
ticography (ECoG), electroencephalography (EEG) data, and 

three-dimensional (3-D) video sequences. Tensors provide a 
natural and efficient way to describe such multiway data, and 
the corresponding learning methods can explicitly exploit the a 
priori information of data structure and capture the underlying 
multimode relations to achieve useful decompositions of the 
data with good generalization ability. In addition, tensor-based 
approaches for joint analysis on data ensemble generated from 
multiple factors or multiple sources, such as facial images from 
different people, pose, and illuminations, have been demon-
strated to be powerful for multilinear dimension reduction, 
multitask classification, and image synthesis [3].

Kernel methods, on the other hand, have proven successful in 
many applications, providing an efficient way to solve nonlinear 
problems by mapping input data space into a high-dimensional 
feature space [4], where the problem becomes linearly solvable. 
Recent research has addressed the incorporation of the kernel 
concept into tensor decompositions [5]–[8], which aims to bring 
together the desirable properties of kernel methods and tensor 
decompositions for significant performance gain when the data 
are structured and nonlinear dependencies among latent variables 
do exist. Hence, kernel-based tensor decompositions promise to 
improve our ability to investigate multiway nonlinear dependen-
cies among structured data.
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In this article, we first review the principle of kernel 
machines and tensor decompositions, then present two funda-
mental models for kernel-based extension of tensor decomposi-
tions, together with an illustrative application. The key issue in 
developing a kernel-based framework for tensorial data is the 
kernel function with tensor-valued inputs, which can take multi-
way structure into account. We propose a family of tensor ker-
nels based on multimode product kernels and probabilistic 
generative models and introduce two novel tensor-based learning 
methods, kernel tensor partial least squares (KTPLS) and kernel 
tensor canonical correlation analysis (KTCCA), which can be 
applied to nonlinear tensor-based regression and classification 
problems. In addition, we extend the Gaussian processes (GPs) 
model to a tensor-valued input space and provide a probabilistic 
interpretation of KTPLS and KTCCA using a GPs latent variable 
model. The effectiveness of these methods is demonstrated by 
concrete applications including reconstruction of 3-D movement 
trajectories from ECoG signals recorded from a monkey’s brain, 
and human action classification based on video sequences.

Kernel MAchines
Kernel machines have gained considerable popularity during 
the last few decades, providing attractive solutions to a variety 
of problems including those in signal processing. In general, 
they have two parts: a module that performs a nonlinear map-
ping into the embedding or feature space implicitly through a 
kernel function and a specific learning algorithm in a dual form 
designed to discover linear relations in the feature space. The 
basic assumption in the development is that if two data points 
are close in the feature space they also have close outputs, 
hence the only information that is required is the similarity 
measure in the feature space, which leads us to avoid explicitly 
having to know the nonlinear mapping function. Instead, the 
similarity measure of two data points in the feature space, i.e., 
an inner product, should be appropriately defined by a repro-
ducing kernel formulated in the input space, which is called a 
kernel trick. Kernel methods were introduced into machine 
learning in 1964 [9] and were subsequently applied successfully 
to many problems such as ridge regression, Fisher discriminant 
analysis, support vector machines (SVMs), partial least squares 
(PLS), and canonical correlation analysis (CCA) [4].

The main ingredients of kernel methods are elucidated 
through a nonlinear extension of principal component analysis 
(PCA), i.e., kernel PCA (KPCA) [10], [11]. PCA is a simple sec-
ond-order approach that has been extensively applied for dimen-
sionality reduction, feature extraction, data compression, and 
denoising [12], [45]. The principle is to seek a low-dimensional 
representation of the data such that the expected residual is as 
small as possible through projection onto mutually orthogonal 
directions of maximum variance. For instance, given a set of 
centered I-dimensional observations [ , , ],X x xN1 f=  the first 
principal component is defined as ,w xyn T

n=  where the param-
eter w can be estimated as the leading eigenvector of sample 
covariance matrix ( / )XXN1 TR =  satisfying w w,m R=  which 
indicates that w can be also expressed as a linear combination of 

the training points, i.e., .w x Xn nn

N

1
aa= =

=
/  Thus, the dual 

representation of PCA is KN a am =  where K X XT=  with 
,x xknn n n=l l  referred to as the Gram matrix with dimension 

.N N#  After estimation of ,a  the principal component of a novel 
example *x  is obtained by * * , * .w x x xy T

n nn

N

1
G Ha= =

=
/

Let us now consider a nonlinear mapping : x R I 8!z  
( ) ,x H!z  that converts data into a feature space. Observe that 

for the dual representation of PCA, all information from training 
data is given by the Gram matrix K consisting of inner products 
between all pairs of training points. Hence, KPCA can be solved 
using the Gram matrix ( ) ( )K X XTz z=  defined in the feature 
space with entries ( ), ( ) ,x xknn n nG Hz z=l l  and the principal com-
ponent of ( *)xz  is computed by ( ),xn nn

N

1
Ga z

=
/  ( *) *x kTH az = , 

where vector *k  is of size N  with entries ( ), ( *) .x xk*
n nG Hz z=  

Note that the nonlinear mapping ( )$z  is used only in the form of 
inner products to yield the Gram matrix. By defining a kernel 
function in the original input space as an alternative way for 
inner products in feature space, i.e., ( , ) ( ), ( ) ,x x x xk G Hz z=l l  the 
Gram matrix K can be computed without explicit knowledge 
of ( ),$z  and is thus also called the kernel matrix.

Kernel functions play a key role for nonlinear learning algo-
rithms since they implicitly define the feature space, called the 
reproducing kernel Hilbert space (RKHS), and enable us to access 
the flexible high—or even infinite—dimensional feature spaces at 
low computational cost, which is particularly useful for address-
ing curse of dimensionality [4]. A popular kernel function is the 
Gaussian radial basis function (RBF) corresponding to an infinite 
feature space, defined by ( , ) [ ( / )]x x x xexpk 22 2b= - -l l  with 
b controlling the width of the RBF kernel.

MulTilineAr dATA AnAlysis
For the development to follow, we first introduce the notation 
adopted in this article. Tensors are denoted by calligraphic letters, 
e.g., ;X  matrices by boldface capital letters, e.g., ;X  and vectors by 
boldface lowercase letters, e.g., .x  The order of a tensor is the 
number of dimensions, also knows as ways or modes. The element 
( , , , )i i iM1 2 f  of an Mth-order tensor X  is denoted by xi i iM1 2f  or 
( ) ,X i i iM1 2f  in which indices typically range from 1 to their capital 
version, e.g., , , , .i I1 2M Mf=  The mth element in a sequence is 
denoted by a superscript in parentheses, e.g., .U( )m  Matricization, 
also known as unfolding, is the process of reordering the elements 
of a tensor into a matrix. More specifically, the mode-m mat-
ricization of a tensor X R I I IM1 2! # # #g  is denoted by X( )m ! 

,R I I I I Im m m M1 1 1# g g- +  while the vectorization of a tensor is denoted 
as vec( ) .X  The inner product of two same-sized tensors ,X X l is 
defined by , ,X X x xi i i i i ii i i M M

M
1 2 1 2

1 2
G H= ff fl l/  and the squared 

Frobenius norm by , .X X XF
2< < G H=  The m-mode product of a 

tensor X R I I Im M1! # # # #g g  with a matrix U R J Im! #  is denoted 
by UX m#  and is a tensor Y  of size I I J Im m1 1 1# # # #g - +   

IM# #g  defined by ( ) .Y x ui i ji i i i i jii

I

1m m M M m
m

m
1 1 1 1 2=g g g=- + /  For 

more detailed descriptions of multilinear algebra, see, e.g., Kolda 
and Bader [2]. The two popular tensor decompositions are the 
Tucker model and CANDECOMP/PARAFAC (CP) model, both of 
which can be regarded as higher-order generalizations of the 
matrix singular value decomposition (SVD) [1].
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Let X R I I IM1 2! # # #g  denote an M th-order tensor, then 
Tucker model, illustrated in Figure 1, is defined as [2]

 ,U U UX G ( ) ( ) ( )
M

M
1

1
2

2# # #g=  (1)

where G RR RM1! # #g  is called the core tensor and U( )m ! 
R I Rm m#  denotes a factor matrix in m-mode. The matricized ver-
sion of (1) is

 ( ) ,X U G U U U U( )
( )

( )
( ) ( ) ( ) ( )

m
m

m
M m m T1 1 17 7 7 7 7g g= + -  (2)

where “7” denotes the Kronecker product operator between 
matrices. Such a decomposition becomes more interesting as 
some specific constraints are imposed. For example, when all fac-
tor matrices { }U( )m

m
M

1=  are columnwise orthonormal and the 
core tensor G is all-orthogonal (i.e., any subtensors are orthogo-
nal, see definition in [13]) and ordered, this model is called 
higher-order singular value decomposition (HOSVD) [13], which 
provides us many useful properties. For instance, the core tensor 
can be simply computed by .U U UG X ( ) ( ) ( )T T

M
M T

1
1

2
2# # #g=  

A more restricted case of Tucker is the CP model where the num-
ber of components in all factor matrices is same (i.e., 
R RM1 g= = ) and the core tensor G  is superdiagonal (i.e., 
g 0r rM1 !g  only if r rM1 g= = ) [2]. The CP model can be also 
defined as a sum of rank-one tensors

 ,u u uX ( ) ( ) ( )
r r r r

M

r

R
1 2

1
% %% gm=

=

/  (3)

where the symbol “%” represents the vector outer product. The 
rank of a tensor X  is defined as the smallest number of rank-one 
tensors in an exact CP decomposition, i.e., rank( )X R=  [2]. An 
important property of CP is its essential uniqueness up to the inde-
terminacy of scaling and permutation under mild assumptions.

Kernel-bAsed Tensor decoMPosiTions
Tensor decompositions consist of several linear transformations 
collaboratively performed in different modes, using multilinear 
algebra, which enables us to capture the underlying interactions 
among multiple modes. As a result, their extension to capture 
nonlinear multimode interactions of data is highly desirable.

Kernel-based multifactor analysis
In practical applications, a tensor-based framework is suitable for 
analyzing a set of observations generated by multiple factors. For 
instance, facial images are affected by multiple factors such as 
belonging to different persons, and having different poses, illumi-
nations, and viewpoints. Tensor representation is able to construct 
a multifactor structure of image ensembles while tensor decompo-
sitions allow us to extract multiple low-dimensional components 
in different modes, which can be employed for image recognition 
and image synthesis. This approach was successfully demonstrated 
by tensor faces [14] and was later extended to kernel-based multi-
factor analysis [3], [15].

Let X RN N N I1 2 3! # # #  denote a fourth-order tensor con-
structed from a set of training samples affected by three factors, 

where a mode-4 vector ( )X :n n n1 2 3  denoted by x R( , , )n n n I1 2 3 !  is 
one data sample with factor indices of , , .n n n1 2 3  For example, 
facial images are generated from N1 people, N2 poses, and N3 
illuminations with each facial example denoted by an I-pixel 
image. The tensor X  can be decomposed by HOSVD as

 ,U U U UX G ( ) ( ) ( ) ( )
1

1
2

2
3

3
4

4# # # #=  (4)

where UG ( )
4

4#  can be written as a new core tensor W ! 
RR R R I1 2 3# # #  for simplicity and { }U R( )m N R

m 1
3m m! #
=  are orthogo-

nal matrices. Thus, a training image x( , , )n n n1 2 3  from the n1th per-
son, the n2th pose, and the n3th illumination condition is 
represented by

 ,x u u uW( , , ) ( ) ( ) ( )n n n
n
T

n
T

n
T

1
1

2
2

3
31 2 3

1 2 3# # #=  (5)

where u( )
n
T1

1  of size R1 1#  is the n1th-row vector of ,U( )1  repre-
senting the low-dimensional components or coefficients with 
respect to the corresponding factor, i.e., n1th person-identity. 
Similarly, ,u u( ) ( )

n
T

n
T2 3

2 3  are components with respect to n2th pose 
and n3th illumination conditions, respectively [3].

This model provides us with several interesting applications:
1) Multitask classification: Given a test sample of face image 
*x  without information on the person, pose, and illumination, 

we might seek the optimal components { | , , }u m 1 2 3*
( )m =  

with fixed W  according to (5), which are regarded as the low-
dimensional features that can be used individually for different 
tasks such as face recognition, pose, and illumination classifi-
cation, or can be used jointly for multitask classification.
2) Robust face recognition: If a priori knowledge about test 
sample *x  is available, such as n2th pose and n3th illumina-
tion, hence only u*

( )1  corresponding to person-identity needs 
to be optimized with the fixed u( )

n
2
2  and u( )

n
3
3  obtained from 

training data. This usually results in improved robustness for 
face recognition [15]. 
3) Image synthesis: For a new example *,x  after all the com-
ponents { }u*

( )m
m 1
3
=  have been estimated, *x  can be translated 

into any known pose and illumination by

 * ,y u u uW *
( ) ( ) ( )T

n
T

n
T

1
1

2
2

3
3

2 3# # #=  (6)

  where ,u u( ) ( )
n n
2 3
2 3  are parameters obtained from training data, 

and *y  is a synthetic image representing the translation of *x  
to the condition of n2th pose and n3th illumination [3].

[fig1] The representation for a third-order Tucker decomposition.
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This multifactor analysis model can be extended to its non-
linear version based on the kernel method. Let us assume that 
all data points are nonlinearly mapped to H-dimensional space 
by ( ),x( , , )n n n1 2 3z  implying that nonlinear mapping is performed 
on mode-4 vectors denoted by ( )X RN N N H

4
1 2 3!z # # #  or tensor 

Uu  for simplicity. Then HOSVD can be performed in the feature 
space as U U UW ( ) ( ) ( )

1
1

2
2

3
3# # #U =u u u u u , where the orthogonal 

factor matrices { }U( )m
m 1
3
=

u  are computed by the SVD of mode-m 
matricization ( ) ( )m m

TUUu u  denoted by ,K R( )m N Nm m! #  which con-
sists of inner products of ( )x( , , )n n n1 2 3z  and is regarded as mode-m 
kernel matrix, thus it can be computed using the kernel trick. 
For example, K( )1  is computed by

 , .K x xk( ) ( , , ) ( , , )
n n

n n n n n n

n

N

n

N
1

11
1 1

1 2 3 1 2 3

3

3

2

2

=
==

l
l^ ^h h//  (7)

For a new face image *x , the goal is to seek its nonlinear mul-
tifactor latent representations { }u*

( )m
m 1
3
=u  satisfying (5). To this 

end, we need to compute the projection ( *) ,xW T
4# zu  where the 

core tensor Wu  can be represented as a multilinear combination 
of all data points in Uu , i.e.,

 .U U UW ( ) ( ) ( )T T T
1

1
2

2
3

3# # #U=u u u u u  (8)

We obtain ( *) * ,x U U UW K ( ) ( ) ( )T T T T
4 1

1
2

2
3

3# # # #z =u u u u  where 
* ( *)xK T

4# zU= u  is a third-order kernel tensor with entries 
denoted as ( *) ( , *)x xK k ( , , )

n n n
n n n

1 2 3
1 2 3= , i.e., kernel evaluation 

between a new data point and all training data points. The details 
of the algorithm can be found in [15]. Similar to principal com-
ponents in KPCA, { }u*

( )m
m 1
3
=u  are multiple low-dimensional latent 

components extracted by nonlinear transformations, which may 
capture more complicated interaction information among mul-
tiple factors.

Kernel-based frameworK  
for tensorial data
The method described above is still based on vector representa-
tion and vector-based kernels, while the tensor structures allow 
us to exploit multilinear interaction among multiple factors. 
However, in many applications, different types of structural data 

such as images, videos, fMRI, and EEG data admit a natural ten-
sorial representation. Next, we introduce a tensor-based model 
by encoding the structural information embedded in the multi-
way data into the kernels.

Suppose we have N  observations of third-order tensors 
{ } ,X R( )n I I I

n
N

1
1 2 3! # #

=  which can be concatenated as a fourth-
order tensor .X R I I I N1 2 3! # # #  We shall assume that the tenso-
rial data points are mapped into the Hilbert space H by

 : .X X R( ) ( )n n H H H1 2 38 !z z # #^ h  (9)

For simplicity, we denote ( )Xz  by tensor ,U  and then per-
form HOSVD in the feature space according to (1), which can 
be rewritten as

 , andU U uG X W( ) ( ) ( ) ( )n
n
T

1
1

4
4

4
4# # #g zU = =^ h , (10)

where U R( ) N R4 ! #  consists of R principal components with its 
nth-row vector denoted by u( )

n
T4  and the core tensor 

,U UW G ( ) ( )
1

1
3

3# #g=  regarded as tensor subspace basis, is 
obtained by ,U( )T

4
4#U  implying that W  can be represented as 

a linear combination of N  observations { } .X ( )n
n
N

1z =^ h  To avoid 
computing high-dimensional W , we need to compute the fac-
tor matrix U( )4  by applying SVD on .( ) ( )

T
4 4U U  Note that each 

element in ( ) ( )
T

4 4U U  is an inner product between two mapped 
tensors in a vectorized form, indicating that it can be defined 
as a kernel matrix with ( , )n nl -entry denoted by

 ( ) vec( ), vec( ) ,K X Xk ( ) ( )
nn

n n=l l^ h  (11)

where ( , )k $ $  could be any standard kernel function. Given a new 
example *,X  the corresponding principal components can be 
obtained by * *,u U K k( )T4 1= -  where ( *) ( , *) .k X Xk ( )

n
n=  Note 

that this naive kernel in (11) is a simple way to generalize kernel 
function to tensors via the vectorization operation, but such ker-
nel actually neglects the structural information conveyed by ten-
sorial representations. To overcome this problem, we need to 
define special kernels for tensorial data.

Kernel function as a 
similarity measure between tensors
The definition of kernels should take into account the a priori 
knowledge about invariance in the input space. For instance, 
translations and rotations of handwritten characters should 
leave their labels unchanged in a character recognition task, 
indicating that these transformed images, though distant in 
the original metric, should be close in the topology defined by 
the kernel. In this section, we discuss definition of kernels for 
tensor-valued inputs, which can take multiway structure into 
account for similarity measures (see Figure 2).

Although a number of kernels have been designed for 
structured objects, few approaches exploit the structure of 
tensorial representations. Recently, Signoretto et al. [5], [8] 
proposed a tensorial kernel exploiting algebraic geometry of 
spaces of tensors and a similarity measure between different 

[fig2] Tensor observations are mapped into rKhs space H by 
a nonlinear mapping function ( ) .$z  The kernel function is 
particularly defined as a similarity measure between two 
tensors.

k (X, X') z (X')

z (X )

z (.)
X

H
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subspaces spanned by higher-order tensors. In addition, they 
showed that spaces of finite-dimensional tensors can be 
regarded as RKHSs associated to product kernels, while the 
Hilbert space of multilinear functions associated to general 
product kernels can be regarded as a space of infinite-
dimensional tensors. There are some valid reproducing kernels 
toward a straightforward generalization to Mth-order tensors, 
such as the kernel functions :X Xk R$#  given as [5]

 
Linear kernel: ( , ) vec( ), vec( ) ,

Gaussian RBF kernel: ( , ) .

X X X X

X X X Xexp

k

k
2
1

F2
2- < <

G H

b

=

= - -

l l

l lc m

 (12)

To define the similarity measure that directly exploits multi-
linear algebraic structure of input tensors, a product kernel can 
be defined by M factor kernels, e.g., ( , ) ( ,XX Xk k ( )mm

M

1
=

=
l %  

),X( )ml  where each factor kernel represents a similarity measure 
between mode-m matricization of two tensors. One such simi-
larity measure between matrices is Chordal distance (projection 
Frobenius norm) on the Grassmannian manifolds [5]. More spe-
cifically, let X  denote an Mth-order tensor, when SVD is applied 
on mode-m unfoldings as ,X U V( )

( ) ( ) ( )
X X Xm
m m m T/=  then the 

Chordal distance-based kernel for tensorial data can be 
defined as

 ( , ) .V V V VX X expk
2
1 ( ) ( ) ( ) ( )

X X X X
m

m m T m m T
F

m

M

2
2

1 b
= - -

=

l l lc m%  (13)

This kernel provides us with rotation and reflection invariance 
for elements on the Grassmann manifold [5].

tensor Kernels using information divergence
Probabilistic kernels have been also investigated based on gen-
erative models and information divergences that are measures 
of dissimilarity between probability distributions, such as the 
Fisher kernel and Kullback-Leibler (KL) kernel [16]. The Fisher 
kernel assumes a generative model that thoroughly explains all 
data samples and maps each sample into a Fisher score com-
puted by the gradient of the log-likelihood with respect to 
model parameters. Here we propose a new probabilistic kernel 
for tensors based on the assumption that each Mth-order ten-
sor observation (e.g., X R( )n I IM1! # #g ) is considered individu-
ally as M different generative models. More specifically, mode-m 
matricization X( )

( )
m
n  is regarded as an ensemble of multivariate 

instances with dimensionality of Im and number of instances of 
,I I I I Im m M1 2 1 1g g- +  generated from a parametric model 

( ).xp X  In this manner, X ( )n  has been successfully mapped into 
M-dimensional model-based probability distribution function 
space, i.e., { ( ) , , } .xp m M1( )

m
n fX =  Subsequently, the simi-

larity measure between two tensors X  and X l in mode-m is 
defined as

 ( ) ( ) ( ) ,x xX XS D p qX X
m m mXX=l l^ h  (14)

where ,p q represents probability density function for X  and X l 
respectively, and ( )D p q  is an information divergence between 

two distributions. One popular information divergence is the sym-
metric KL (sKL) divergence [16]

 

( ) ( ) ( )
( )
( )

( )
( )
( )

.

x x x
x
x

x

x
x
x

x

log

log

D p q p
q
p

d

q
p
q

d

2
1

2
1

sKL X X X
X
X

X
X
X

=

+

3

3

3

3

-

+

-

+

l
l

l
l

^ h #

#
 (15)

Another possibility is the Jensen-Shannon (JS) divergence 
[17], [18] expressed by

 ( ) ( ) ( ),KL KLD p q p r q r2
1

2
1

JS = +  (16)

where ( )KL $ $  denotes Kullback-Leibler divergence and 
( ) ( ( ) ( )) / .x x xr p q 2= +  JS divergence can be interpreted as the 

average KL divergence between each probability distribution and 
the average distribution, or equivalently as the diversity of two dis-
tributions with equal priors. Finally, a probabilistic product kernel 
for tensors is defined as

 ( , ) ( ) ,X X X Xexpk S
2
1
m

m
m

M
2

2
1

a
b

= -
=

l lc m%  (17)

where a denotes a magnitude parameter and [ , , ]M1 fb b  are 
length-scales parameters. As isotropic RBF kernel, { }m m

M
1b =  in 

(13) and (17) could also be the same. All kernel parameters are 
usually denoted by { , , , } .m M1m fi a b= =  It can be shown 
that both sKL and JS divergences are nonnegative and equal to 
zero when ( ) ( ),x xp q=  while they do not fulfill the triangle 
inequality [i.e., we do not have ( ) ( ) ( )D p q D p r D r q# + ]. 
However, it has been proven in [17] and [18] that [ ( )]D p q /

sKL
1 2 

and [ ( )]D p q /
JS

1 2 fulfill the triangle inequality thus is a metric, 
implying that the tensor kernel defined in (17) is a metric ker-
nel. For simplicity, the Gaussian model assumption can be 
employed with model parameters including a mean vector and a 
full covariance matrix, i.e., { , }m m mnX R=  that can be esti-
mated by the maximum likelihood from .X( )m  The detailed algo-
rithms using sKL and JS divergences between two multivariate 
Gaussian distributions are given in [16], [19], and [20]. In prac-
tice, because of the absence of closed-form solutions for proba-
bilistic kernels, one may end up with a kernel matrix that is not 
positive-definite due to inaccuracies in the approximations.

The tensor kernels described above have some interesting 
properties. An intuitive interpretation is that Mth-order tensor 
observations are first mapped into an M-dimensional model 
space, then information divergence is applied as a similarity 
measure in the model space. Hence, such a kernel combines 
generative models with discriminative ones when used in con-
junction with a specific discriminative method such as GPs. The 
probabilistic tensor kernels can deal with multiway data with 
missing values and variable lengths. Since it provides a way to 
model one tensor from M different viewpoints that correspond 
to different low-dimensional vector spaces, multiway relations 
can be captured in the similarity measure. Furthermore, the 
number of kernel parameters in (17) is much smaller than that 
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of an RBF kernel performed on unfolded tensors, hence making 
the tensor kernel less prone to overfitting.

Kernel-bAsed leArning 
AlgoriThMs for Tensor-vAlued inPuTs

Kernel-based tensor Pls regression
Kernel partial least squares (KPLS) has been successfully used in 
diverse applications both for regression and classification [21], 
[22]. For tensor input data, higher-order partial least squares 
(HOPLS) [23] was introduced with the goal of predicting a ten-
sor Y  from a tensor X  through multilinear projection of the 
data onto the latent space followed by regression against the 
latent variables. Here, we introduce kernel-based tensor PLS 
(KTPLS) as an extension of HOPLS to kernel spaces.

Given N  pairs of tensor observations {( , )} ,X Y( ) ( )n n
n
N

1=  X ( )n  
denotes an Mth-order independent tensor and Y ( )n  denotes an 
Lth-order dependent tensor, which can be concatenated to form 
an ( )M 1+ th-order tensor RX N I IM1! # # #g  and ( )L 1+ th-order 
tensor .Y RN J JL1! # # #g  We then let ,X  Y  to be mapped into the 
Hilbert space as described by (9). For simplicity, we denote 
( )Xz  by U and ( )Yz  by .W  KTPLS finds tensor decompositions 

such that
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(18)

where ,P Q( ) ( )m l" , denote factor matrices and { , }G GX Y  denote 
core tensors. ,E EX Y , and EU represent residuals and errors. 
Here, D is a diagonal matrix denoting the inner relation 
between latent vectors. Since P PG ( ) ( )

X M
M

2
1

1# #g +  denoted 
by GXu  and Q QG ( ) ( )

Y L
L

2
1

1# #g +  denoted by GYu  can be rep-
resented as a linear combination of { ( )}X ( )nz  and { ( )}Y ( )nz  
respectively, i.e., TGX

T
1#U=u  and ,UGY

T
1#W=u  we only 

need to explicitly find the latent vectors of [ , , ]T t tR1 f=  and 
[ , , ]U u uR1 f=  with pairwise maximum covariance through 

solving an optimization problem sequentially by applying defla-
tion, which is expressed by

 [ ( , )] , , , ...,R,t umax cov r 1 2
{ , }w v

r r
2

( ) ( )
r
m

r
l

=  (19)

where

 , .t w w u v v( ) ( ) ( ) ( )
r r

T
M r

M T
r r

T
L r

L T
2

1
1 2

1
1# # # #g gU W= =+ +

Rewriting (19) in matrix form, it becomes ,t w u( )r r r1U= =u  
,v( ) r1W u  which can be solved by a kernelized version of the eigen-

value problem, i.e., t t( ) ( ) ( ) ( )
T T

r r1 1 1 1U WU W m=  and u t( ) ( )r
T

r1 1WW=  
[21]. Note that ( ) ( )

T
1 1UU  contains only the inner products 

between vectorized input tensors, which can be replaced by an 
N N#  kernel matrix .KX  Thus, we have K K t tX Y r rm=  and 

.u K tYr r=  To take the multilinear structure into account, 
the kernel matrices should be computed using the kernel func-
tions for tensors, i.e., ( ) ,K X Xk ( ) ( )

X nn
n n=l l^ h and ( )KY nn =l

,Yk ( )n^  .Y ( )nl h  Finally, the prediction of a novel data point X * 
can be achieved by [21]

 ( ) ,y* k* U T K U T Y( )X
T T T T1

1= -  (20)

where ( *) , *k X Xk ( )
n

n= ^ h and y* T should be reorganized to 
tensor form *.Y

The significance of (20) can be explained in several ways. 
First, it is a linear combination of N observations { }Y ( )n  with the 
coefficients * ( ) ;k U T K U TX

T T T1-  the second interpretation is 
that y

*
j is predicted by a linear combination of N kernels, each 

one centered on a training point, i.e., , * ,X Xy k* ( )
j n

n
n
N

1
a=

=
^ h/  

where ( ) .U T K U T Y( )Xn
T T

nj
1

1a = -^ h  Finally, a third interpreta-
tion is that t* is obtained by nonlinearly projecting *X  onto the 
latent space, i.e., * * ( ) ,t k U T K UXT T T 1= -  then *y T

 is predicted by 
a linear regression against *,t  i.e., * *y t CT T=  where regression 
coefficient is .C T Y( )

T
1=  In general, to ensure the strict linear 

relationship between latent vectors and output in original spaces, 
the kernel function on data Y  is restricted to linear kernels.

Kernel-based tensor cca
CCA can be also used to determine the linear relationship 
between two sets of observations. In essence, CCA finds the 
directions of maximum correlation while PLS finds the direc-
tions of maximum covariance. Covariance and correlation are 
two different statistical measures for quantifying how variables 
covary. CCA is a popular choice for many applications, such as 
supervised dimensionality reduction, multiview learning, and 
multilabel classification [24]. Kernel canonical correlation anal-
ysis (KCCA) has been proposed in [25] and [26], and its multi-
linear extension for third-order tensors in [27].

Here, we introduce kernel-based tensor CCA (KTCCA) as a 
multiway extension of KCCA. Given N  observations of two ran-
dom tensors denoted as X  and ,Y  the objective function of 
KTCCA can be written as

 ,
w K wv K v
w K K vmax

{ , }w v
X Y

X Y

T T

T

2 2
 (21)

where the kernel matrices ,K KX Y are computed using the ker-
nel function for tensorial data as defined in (13) and (17), 
{ , }w v RN!  are weight coefficients in kernel space correspond-
ing to X  and ,Y  respectively. The solution can be obtained by 
solving ( / ) , ,w K K v K v K v1 0X Y Y Y

1 2 2 2m m= - =-  which has the 
same form as KCCA [26].

gAussiAn Processes in Tensor vAriATe sPAce

tensor-based gaussian Process regression
GPs are a class of probabilistic models that specify a distribution 
over functions and perform inference directly in the function 
space [28]. We introduce a GP model in tensor-valued input 
space, called tensor-based GPs (tensor-GPs), by taking into 
account the tensor structure of data. Given a set of paired obser-
vations { , , , },X y n N1( ) ( )n n f=  the tensor regression model is 
defined as ( ) ,Xy f( ) ( )n n e= +  where, for example for multilinear 
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regression, the latent function can be represented as 
( ) w wX Xf ( ) ( )T

M
M T

1
1# # #g= . For nonlinear extensions, GP 

prior for latent function is specified by

 ( ) ( ( ), ( , )),X GP X X Xf k+ n l  (22)

where ( )Xn  denotes mean function and covariance function 
( , )X Xk l  with tensor-valued inputs is predefined by a tensor ker-

nel. Thus, assuming additive independent and identically distrib-
uted (i.i.d.) Gaussian noise with variance ,2v  the likelihood of 
noisy observations becomes ( , ).y K IN 0 2+ v+  The predictive 
distribution of *y  corresponding to *X  can be inferred as 

| , , ( , ( ))yX NX covy y y* * * *+ r  where ky* *T=r ( )K I y2 1v+ -  and 
( *) ( *, *) * ( ) *k K I kX Xcov y k v= - +T 2 1 2v+-  [28]. Compar-

ing this expression with (20), we see that the relationship between 
GP and KTPLS regression is that GP computes an exact inverse of 
kernel matrix with noise variance added to the diagonal, while 
KTPLS approximates kernel matrix through projections on the 
latent vectors T and U and then computes its inverse.

The covariance function for tensors defined in (17) contains 
hyperparameters that can be learned from observed data based 
on maximum a posterior (MAP) estimation, given by

 { , } { ( , ) ( ) ( | )} .Darg min log logp p p
,

i i iv v c v c= - - -
i v

i v
t t  

(23)

[ , , , ]M1 fi a b b=  denotes hyperparameters of covariance func-
tion and implements automatic relevance determination (ARD) 
[28], while v represents the noise variance. For simplicity, the 
hyperpriors for i and v with hyperparameters ,c ci v are usually 
set to noninformative distributions. Simple gradient-based opti-
mization methods can be used to solve (23), which requires the 
computation of the marginal likelihood and its partial deriva-
tives w.r.t. the hyperparameters, i.e.,

 ( , , ) tr ,y y K
K

K y K
K

Xlogp 2
1

2
1

m

T
y

m

y
y y

m

y1 1 1

2
2

2
2

2
2

i
i

v
i i

= -- - -c m  

 (24)

where K K Iy
2v= +  [28].

Probabilistic interPretation of KtPls and Ktcca
Many classical methods have been interpreted under a probabi-
listic model such that overfitting and model selection can be 
addressed, while also enabling the use of the powerful Bayesian 
framework. For instance, the probabilistic interpretations of 
PCA and CCA have been presented in [29] and [30], while KPCA 
and KCCA are presented as a GP latent variable model (GPLVM) 
[31]–[33], and nonlinear Tucker decomposition of tensors as a 
nonparametric Bayesian model using GPs [6].

We introduce a probabilistic interpretation of KTPLS and 
KTCCA through the generative model shown in Figure 3. Let 

{ }XX R( )n
n
N N I I

1
M1!= # # #g

=  and { }YY R( )n
n
N N J J

1
L1!= # # #g

=  
with their mode-1 matricizations denoted by X R( )

N I
1 ! #  and 

,Y R( )
N J

1 ! #  we assume both X  and Y  are generated from shared 
latent variables { } ( , )t IN 0n n

N
1 +=  via nonlinear functions given by

 ( ) , ( ) ,t tX F E Y F E( ) ( )n
X n X

n
Y n Y= + = +  (25)

where each element in EX and EY is from i.i.d. noise ( , )N 0 X
1K-  

and ( , ),N 0 Y
1K-  respectively. Note that ,F FX Y are tensor-valued 

nonlinear functions : , :t tF X F YX Y7 7  and ( )X ( )n
i iM1f  is gen-

erated from ( ) .tf i i
X

nM1f  By specifying GP priors for latent functions 
f i i
X

M1f  with a covariance function ( , ) ( / )t t expk 2X Xa b= -l ^

t t 2- l h and for f j j
Y

L1f  with ( , ) ( / ) ,t t t texpk 2Y Y
2a b= - -l l^ h  

we obtain the marginalized likelihood by integrating latent func-
tions out [31], [33], i.e.,
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where xi denotes the ith column of ,X( )1  y j denotes the jth 
column of ,Y( )1  and ,I Imm

=%  .J Jll
=%  K K IFX X

1
X K= + -  is 

governed by hyperparameters { , , },X X X Xi a b K=  and 
K K IFY Y

1
Y K= + -  by { , , } .Y Y Y Yi a b K=  From the graphical 

model in Figure 3, we can see that observations ,X Y  are condi-
tionally independent given latent variables ,T  thus resulting in 
the joint distribution

 ( , | , , ) ( | , ) ( | , ) ( ),T T T TX Y X Yp p p pX Y X Yi i i i=  (27)

and the corresponding negative log-likelihood [32], [34]
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To take into account the information on the structure of input 
data tensors, X X( ) ( )

T
1 1  and Y Y( ) ( )

T
1 1  can be simply replaced by kernel 

matrices KXu  and KYu  using the kernel functions ( , )X Xk l  that are 
particularly defined for tensors. Based on this model, we can opti-
mize the latent representation T by maximizing the joint likeli-
hood of the two sets of observations. In general, there is no 
closed-form solution for latent variables and hyperparameters, 
and an iterative optimization scheme such as gradient optimiza-
tion can be used.

[fig3] graphical model for probabilistic interpretations of 
KTPls/KTccA. The green nodes represent observed variables 
and the pink nodes represent the latent variables. The 
deterministic parameters are shown explicitly by the smaller 
solid nodes, and the box plates (labeled i and J) represent 
independent observations.
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exPeriMenTs And APPlicATions

simulations on synthetic data
To illustrate the advantages of tensor-GP for structured data 
that originally possess multiway relations, { }X ( )n

n
N

1=  are gener-
ated according to the CP model defined in (3) where 
{ , , , , , , }u r R m1 1 3( )

r
m f f= =  are drawn from a standard uni-

form distribution and { } ( , ) .N 0 1r r
R

1 +m =  Here, we set X ( )n !

R5 5 5# #  with ( ) .X Rrank ( )n =  Output samples are generated by 
( ( )) ,Xy f g( ) ( )n n f= +  where ( , )N 0 2+f vf  is additive noise, 

multilinear transformation : xXg R( ) ( )n n 27 !u  is defined as 
w wXx( ) ( ) ( ) ( )

i
n n

i
T

i
T

1
1

3
3

# #g=u  with { } ( , ),w N 0 1( )
i
m

m 1
3 +=  and a 

nonlinear transformation is defined as ( ) ( )xf b b x( ) ( )n n
1 2 1

2= + +u u

( )b x( )n
3 2

2u  with coefficients [ , , ] .b 0 1 3=  These two successive 
transformations guarantee that y( )n  is neither exactly linear 
nor mulitilinear related to .X( )n  For comparison, tensor-GP 
with JS divergence covariance function defined in (17) is per-
formed directly on the data set { , },X y  while standard GP with 
squared exponential covariance function is performed on the 
unfolded data set { , } .X y( )1  The MAP estimation of hyperparam-
eters in (23) is used to implement ARD. Relative squared error, 
= ( ) ( ) ,y y y yRSE n nn

N
nn

N2
1

2
1

- -
= =
t r8 8B B/ /  is used for perfor-

mance evaluation.
The results comparing the performance of tensor-GP and 

standard GP are given in Figure 4. In the first simulation, we 
investigate the performance for an increasing number of sam-
ples N  (N  samples for training and another N  samples for 

testing) with other conditions fixed, i.e., noise ratio ( / ) 0fv v =f , 
where fv  denotes the standard variance of generated 
{ ( ( ))}Xf g ( )n

n
N

1=  and ( ) .X 10rank ( )n =  As shown in Figure 4(a), 
tensor-GP significantly outperforms standard GP when the 
number of samples is relatively small compared to the number 
of variables in X ( )n —in this case, 125. In the second simulation, 
we investigate the performance for varying noise ratio with 
other conditions fixed for , rank( ) ,XN 150 10( )n= =  since both 
tensor-GP and GP obtain a similar performance under such 
conditions in the first simulation. As shown in Figure 4(b), ten-
sor-GP significantly outperforms GP when noise ratio is high. 
Figure 4(c) illustrates the predictions on a specific data set 
under conditions setting , ( / ) . , rank( ) .XN 50 0 1 6( )

f
nv v= = =f  

Observe that tensor-GP enhances predictive performance com-
pared with GP, and the confidence region is much smaller by ten-
sor-GP. Note that when the rank of data is smaller, performance is 
better for both two methods. The MAP estimation of hyperparam-
eters is shown in Table 1, in which the number of hyperparame-
ters for GP are too large to show. In summary, these simulations 
demonstrate the advantages of tensor kernel with respect to 
robustness to noise and small number of samples, when data 
itself has multilinear structure.

ecog decoding using KtPls
To illustrate the effectiveness of tensor kernel, KTPLS regression 
was applied for decoding of 3-D movement trajectories from 
ECoG signals recorded from a monkey brain.  The data sets and 
detailed descriptions are freely available from http://neurotycho.
org. The movements of a monkey were captured by an optical 
motion capture system with reflective markers affixed to the left 
shoulder, elbows, wrists, and hand, thus the dependent data can 
be represented as a third-order tensor Y  (i.e., samples # 3-D posi-
tions # markers). The ECoG signals are transformed to time-fre-
quency domains to represent the discriminative features. As a 

[TAble 1] MAP esTiMATion of hyPerPArAMeTers.

Models MAPi 2
MAPv

Tensor-GP (21.37, 2.29, 1.98, 1.61) 0.0094
GP reGression lenGTh = 126 0.0495

[fig4] The comparison between tensor-gP and standard gP for regression. The predictive performance is illustrated in (a) with varying 
number of samples and in (b) with varying noise ratio. Part (c) visualizes the predicted and actual output on a specific data set, where 
the gray area shows uncertainty of predictions.
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result, the independent data is represented as a fourth-order ten-
sor X  (i.e., epoch # channel # frequency # time), where each 
ECoG epoch ,X ( )n  containing the most recent past one second 
time window, corresponds to one sample of movement data .Y ( )n  
Two different tensor kernels using Chordal distance as defined in 
(13) and using sKL divergence as defined in (17) are employed by 
KTPLS individually for performance evaluation. The data set is 
divided into training set (ten minutes) and test set (five  minutes), 
and the optimal tuning parameters, such as kernel parameters 
{ }m m 1

3b =  and number of latent vectors, are selected by cross-vali-
dation on the training set. The performances on the test set are 
shown in Figure 5, illustrating the superior-
ity of KTPLS over PLS, HOPLS, and multi-
task learning with l ,2 1-norm regularization 
[35]. The best result is achieved by KTPLS 
using sKL divergence-based tensor kernel. 
Figure 6 further visualizes the reconstructed 
trajectories of a monkey hand using two ten-
sor kernels for comparison. This example 
demonstrates that the proposed generative 
probabilistic kernel can bring together the 
advantages of both kernels and multilinear 
tensor representation. Since a generative 
model is employed by sKL kernel, KTPLS 
can be considered to be both a generative 
and a discriminative method.

video classification using Ktcca
Human action recognition in videos is of 
high interest for a variety of applications 
such as video surveillance, human-
computer interaction, and video retrieval, 
where the most competing methods are 
based on motion estimation [36], local 
space-time interest points and visual code 

words [37]–[39], multiple classifiers [40], [41], sparse represen-
tation [42], and multiway tensor methods [27], [43]. Tensor rep-
resentation enables us to directly analyze 3-D video volume and 
encode global space-time structure information. To illustrate 
the advantages of tensor kernels, the KTCCA algorithm, 
described in the section “Kernel-Based Tensor CCA,” is used for 
extracting the global space-time geometrical features and is 
evaluated on the largest public KTH human action database 
[38] that contains six types of actions [walking (W), running 
(R), jogging (J), boxing (B), hand-waving (H-W), and hand-clap-
ping (H-C)] performed by 25 people in four different scenarios 

[fig5] The prediction performance for movement trajectories recorded from a monkey’s shoulder, elbow, wrist, and hand using five 
regression methods: linear Pls (lP), multitask learning (MT), hoPls (hP), KTPls with chordal distance based kernel (KT1), and KTPls 
with sKl divergence-based kernel (KT2). The values of evaluation index /Q 1 y y y2 2 2< < < <= - -t  for ( , , )X Y Z -positions are shown in 
different colors and are accumulated individually for each limb marker, which demonstrates that KT2 achieves the best performance. 
The fact that x-coordinate is missing for lP indicates that .Q 02 =
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[fig6] visualization of reconstructed and actual trajectories of hand movements. 
observe that KTPls using sKl divergence-based kernel obtains better prediction than 
chordal distance-based kernel.
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(outdoors, outdoors with scale variation, outdoors with different 
clothes, and indoors). The total 600 video sequences are divided 
with respect to the people into a training set (eight people), a 
validation set (eight people), and a test set (nine people) 
according to the standard setting in [38]. Each video is space-
time aligned and uniformly resized to 20 # 20 # 32, which are 
then represented by a third-order tensor X ( )n  (see Figure 7). 

We apply KTCCA to find a low-dimensional latent space 
between video sequences denoted by X  and the corresponding 
class membership denoted by ,y  which can be considered as a 
supervised feature extraction approach. KTCCA using the Chordal 
distance kernel defined in (13) is compared with KCCA using an 
RBF kernel performed on vectorization of tensors { ( )} .Xvec ( )n

n
N

1=  
For comparison, isotropic kernels [i.e., M1 gb b= =  in (13) and 
RBF kernel] are used. The optimal kernel parameter is found 
according to performance on the validation set and then is used 
to retrain the models from both training and validation set. The 
test data is projected onto the latent space by learned models to 
obtain the discriminative features as shown in Figure 8. 

Observe that KTCCA outperforms KCCA with respect to the 
discriminative ability and six classes are well separated even in 
two dimensional space. A simple k-nearest neighbor classifier 
(k-NN) is applied on lower-dimensional features for action 
classification and the confusion matrices on test set are com-
pared in Table 2, in which rows correspond to the ground 
truth, and columns correspond to the classification results. It 
can be seen that KTCCA achieves average accuracy of 98% 
while KCCA achieves 83%, and the confusion of KTCCA only 
appears between running and jogging, and between hand-clap-
ping and hand-waving, which is consistent with our intuition 
that these two pairs of actions are easily confused. The superior-
ity of KTCCA over KCCA indicates that space-time structures of 
video volumes captured by tensor kernel significantly improves 
the discriminative performance.

In addition, leave-one-out performance is evaluated for com-
parison with the state-of-the-art methods on the KTH data set. 
As shown in Table 3, KTCCA achieves the highest overall classi-
fication accuracy followed by product manifold (PM) [43], ten-
sor CCA (TCCA) [27], and boosted exemplar learning (BEL) 
[41]. In summary, both global and local space-time information 
are discriminative and promising for action recognition and the 
results demonstrate the effectiveness and advantages of the ten-
sor kernel when employed by KTCCA for global space-time fea-
ture extraction from videos. The MATLAB code for the 
implementation can be found at http://www.bsp.brain.riken.
jp/~qibin/homepage/KernelTensor.html.

suMMAry
In this article, we have presented a framework that brings 
powerful kernel methods and tensor decomposition tech-
niques together such that nonlinear kernel-based strategy can 
be applied to tensor decompositions and tensor subspace 

[fig7] Three examples of video sequences for (a) hand waving, 
(b) hand clapping, and (c) walking actions, which can be 
represented in a tensor form. 
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[fig8] visualization of test data in the first two-dimensional latent space. (a) represents KTccA using a tensor kernel while (b) 
represents KccA using an rbf kernel performed on the vectorization of tensors. observe that the features obtained by KTccA are 
more discriminative than KccA features.
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models, allowing one to account for both the multilinear 
structure and nonlinear dependencies within the data. An 
overview of the state-of-the-art methods relevant to this topic 
is provided together with specific examples. The definition of 
effective kernel functions for tensors creates a range of possi-
bilities for the development of machine-learning methods that 
take the underlying multiway structure into account. In par-
ticular, we studied tensor decompositions from a kernel per-
spective, and kernel-based methods from a tensor 
representation viewpoint. Several novel models are proposed 
together with probabilistic interpretations, and their advan-
tages are demonstrated by simulations on synthetic data and 
two real-world applications.
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