
Unsupervised Chinese Phrase Parsing Based on Tree Pattern Mining

Xiaotian Zhang
Shanghai Jiao Tong University
xtian.zh@gmail.com

Hai Zhao
Shanghai Jiao Tong University
zhaohai@cs.sjtu.edu.cn

Abstract

This paper investigates unsupervised phrase
parsing for Chinese. It is the first time accord-
ing to our best knowledge that unsupervised
data oriented (U-DOP) model described in
(Bod06) is fully and exactly re-implemented.
Our U-DOP implementation achieves the sim-
ilar results on CTB as reported in (Bod06).
Moreover, using the evaluation measure in
(Bod07), our system achieves the highest F1
score among all the existing POS-sequence
based unsupervised phrase parsing models.
We also give a detailed comparison between
the performance of our U-DOP system and
the unsupervised CCL parser (Seg07) in terms
of prediction accuracy on different kinds of
phrases.

1 Introduction

Unsupervised syntactic parsing can be thought as
finding patterns in the training data and learn a prob-
abilistic model of the syntactic structure. There
exists mainly four unsupervised parsing models C-
CM (KM02), DMV (KM04), UDOP (Bod06), CCL
(Seg07). One major difference lies in the different
definition of component when assigning probabili-
ty to a syntactic structure. In the case of CCM (K-
M02), probability is assigned by the constituent and
non-constituent sequences of parts-of-speech in the
structure as well as the contexts of these sequences.
In the case of U-DOP (Bod06), the probability of
a syntactic structure is the product of the probabili-
ties of the subtrees. In the case of DMV, the prob-
ability is assigned to the two parts-of-speech being

joined by a link. As for CCL, a new link based rep-
resentation of syntactic structure is developed and
probability of the new links is calculated. Among
these unsupervised parsing models, UDOP is an all
subtree approach which achieves higher F score than
CCM, and DMV, but not comparable with CCL be-
cause CCL parses from plain text while the others
parse from pos sequences.

A major part of the U-DOP is the n-best CYK
parsing. According to (HC05), they developed three
algorithm for n-best parsing and the third one is a
generation of the algorithm developed by (JM00).
Based on their comparison, the third algorithm beat
the other two in average parsing speed and only has
an advantage over Jimenez’s algorithm in heap size
when n is less than 64 in their experiments. Because
we want to calculate the top 100 best trees when
parsing, we choose to implement Jimenez’s algorith-
m which is easier to implement. As described in
(JM00). The main idea of this algorithm is that first-
ly the best parse tree is computed using the CYK al-
gorithm, and then a large number of alternative parse
trees in order by weight (or probability) can be ob-
tained and this takes only a small fraction of the time
required by the first step.

In this paper, we implement U-DOP as described
in (Bod06). It is the first time according to our best
knowledge that U-DOP is fully re-implemented.

2 Implementation of U-DOP 1

There are three steps in U-DOP model.

1The implementation could be downloaded from
http://sourceforge.net/projects/udop/

The first step of U-DOP is to enumerate all possi-
ble binary trees for training sentences and generate
PCFG rules. For example, there will be five bina-
ry trees in all for the pos tag sequence “NNS VB-
D JJ NNS”. For all the training sentences, calculate
all the possible binary trees and sample from these
generated trees randomly because the whole possi-
ble trees will be too numerous to handle with. As
in (Bod06), for sentences of 7 words we random-
ly sample 60% of the trees, and for sentences of 8,
9 and 10 words we sample respectively 30%, 15%
and 7.5% of the trees. Then PCFG rules are gener-
ated from the sampled trees as (Goo96). For each
nonterminal node Aj with children Bk and Cl in the
tree, eight PCFG rules will be generated as follows:

Aj → BC(1/aj) A → BC(1/a)

Aj → BkC(bk/aj) A → BkC(bk/a)

Aj → BCl(cl/aj) A → BCl(cl/a)

Aj → BkCl(bkcl/aj) A → BkCl(bkcl/a)

where bk and cl are the number of non-trivial sub-
trees of Bk and Cl respectively and aj = (bk +
1)(cl +1). According to the properties of the PCFG
rules, each derivation of the subtrees will have a i-
somorphic PCFG derivation with equal probability,
so a n-best CYK parsing algorithm could be used to
find the n-best parses based on the PCFG rules.

Since the estimator of DOP is biased and incon-
sistent as pointed out in (Joh02), we rectified it as
described in (Bod03) by adding the correction factor
α which is the number of times nonterminals of type
A occur in the training data, and experiment shows
this correction factor increases the F score by 13%
on CTB.

Aj → BC(1/aj) A → BC(1/aα)

Aj → BkC(bk/aj) A → BkC(bk/aα)

Aj → BCl(cl/aj) A → BCl(cl/aα)

Aj → BkCl(bkcl/aj) A → BkCl(bkcl/aα)

Since Bod didn’t clarify that whether the rules are
generated from pos tag sequences with or without
punctuation, we tried to generate PCFG rules from
WSJ10 both with and without punctuation respec-
tively and find experiment using punctuation could
reproduce 14.8 ∗ 106 distinct PCFG rules mentioned
in (Bod06). And moreover, experiment shows the

performance of using PCFG rules including punc-
tuation marks is better than that of using rules gen-
erated from pos tag sequences excluding punctua-
tion marks, which indicates the use of punctuation in
predicting syntactic structures. We extract 6.2 ∗ 106
rules from CTB10 v3.0 in all.

When tested on the test sentence, U-DOP will find
the n best most probable parses for the test pos tag
sequences by the CYK n-best parsing algorithm us-
ing the PCFG rules generated. Here we adapt the
CYK n best algorithm described in (JM00). The
main idea of this algorithm is that after the best parse
tree has been computed using the CYK algorithm, a
large number of alternative parse trees in order by
weight (or probability) can be obtained in a small
fraction of the time required by the CYK algorithm
to find the best parse tree. Firstly, we have to take
the negative log of the probabilities of the rules and
thus convert the problem to finding the trees with n
smallest weights.

We use Ai:k to denote the nonterminal node in
the tree which dominates from the ith pos tag to
the kth pos tag. Υn(Ai:k) denotes the candidate
set of nonterminal node Ai:k and Tn(Ai:k) denotes
the nth best tree which is the smallest one among
Υn(Ai:k). Use CYK parsing algorithm to get the
the most probable tree T 1(Ai:k) and then use the fol-
lowing recursive equations to calculate the Tn(Ai:k)
from Tn−1(Ai:k).

Let

Υ1(Ai:k) = {< Ai:k, T
1(Bi:j), T

1(Cj+1:k) >

: ∃A → BC ∀ j s.t i ≤ j < k}
(1)

For n > 1, let us assume that

Tn−1(Ai:k) =< Ai:k, T
p(Bi:j), T

q(Cj+1:k) >

(2)

Then if q = 1

Υn(Ai:k) = (Υn−1(Ai:k)− Tn−1(Ai:k))

∪{< Ai:k, T
p(Bi:j), T

q+1(Cj+1:k) >}
∪{< Ai:k, T

p+1(Bi:j), T
q(Cj+1:k) >}

(3)

otherwise

Υn(Ai:k) = (Υn−1(Ai:k)− Tn−1(Ai:k))

∪{< Ai:k, T
p(Bi:j), T

q+1(Cj+1:k) >}
(4)

Then we have

Tn(Ai:k) = argminT∈Υn(Ai:k)W (T)

After calculating the top 100 best trees, the last
step of U-DOP is to sum the probabilities of the trees
of the same structure, because different deviation of
subtrees may lead to parses of the same structure.
Then the tree structure with the largest probability is
the predicted phrase structure of the test sentence.

3 Experiments

We evaluate the performance of U-DOP as described
in (Bod06; Kle05). The definitions of unlabeled pre-
cision (UP) and recall (UR) of a proposed corpus
P = [Pi] against a gold corpus G = [Gi] are:

UP (P,G) ≡
∑

i |brackets(Pi) ∩ brackets(Gi)|∑
i |brackets(Pi)|

UR(P,G) ≡
∑

i |brackets(Pi) ∩ brackets(Gi)|∑
i |brackets(Gi)|

(5)

UF1(P,G) =
2

UP (P,G)−1 + UR(P,G)−1

Moreover, Bod pointed out in MLCS07, London
that “ In evaluating U-DOP, we had to binarize test-
set trees in Penn Treebank otherwise the f-scores be-
come meaningless (Kle05; KM02; KM04)” . Be-
cause the test-set trees are more flat than the binary
predicted trees by U-DOP, it tends to have lower pre-
cision and higher recall if evaluated as above with-
out binarizing the test set. And testing on binarized
test-set will certainly increase the number of right
brackets predicted. However, on one hand, the re-
sults of the CCM and DMV model are reproduced
without binarizing the test set by a current avail-
able open source implementation2 and the Figure 6
in (KM05) also implies that CCM is not evaluated
on binarized test set. On the other hand, all binary
branching bracketings of a sentence have the same
number of brackets, and thus evaluation on binarized
test-set trees will lead to equal UP and UR if UR is e-
qual to the number of brackets shared by the predict

2It is available from http://www.cs.famaf.unc.edu.ar/ fran-
colq/en/proyectos/dmvccm

tree and binarized test tree divided by the total bi-
narized gold brackets, which is contradictory to the
results reported in (Bod06; Kle05). Otherwise, if
UR is calculated via dividing the number of shared
brackets by the number of test-set brackets before
binarizing, the recall score is also meaningless since
binarizing generates new brackets that don’t exist in
the gold brackets.

So a meaningful evaluation measure using bina-
rized test-set is that UR is still calculated as above
while UP is calculated as follows,

UP (P,G) ≡
∑

i |brackets(Pi) ∩ brackets(Bi)|∑
i |brackets(Pi)|

(6)
where B = [Bi] is the binarized version of the gold
corpus 3. We just use right branching of the test-set
trees.

model UP UR F1
CCM 34.6 64.3 45.0
DMV 35.9 66.7 46.7
DMV+CCM 33.3 62.0 43.3
UDOP(Bod) 36.3 64.9 46.6
UDOP* 42.8
UDOPnon−binarized(ours) 34.4 53.2 41.8
UDOPbinarized(ours) 42.3 53.2 47.1
CCL 50.1 51.1 50.6

Table 1: Test Results on CTBv3.0

model UP UR F1
UDOPnon−binarized(ours) 40.0 55.7 46.5

Table 2: Test Results on CTBv5.0

We use the version 3.0 of CTB to test our imple-
mentation as in (KM02; KM04) and compare the F1
score of different models in Table 1.4

The experiment on CTB10 v3.0 (about 2137 sen-
tences) takes nearly 52 hours on a computer with
Intel core X5560@2.80GHz. We also test our
system on version 5.0 of CTB and achieve F s-
core of 46.5. The UP is calculated by equation
5 in UDOPnon−binarized and by equation 6 in
UDOPbinarized.

3The details on how to binarize the test-set trees are not giv-
en in (Bod06)

4The version of CTB used in (Bod06) is not identified.

phrase percent U-DOP CCL shared
CP 4.0% 0.146 0.099 0.012
DNP 2.7% 0.246 0.234 0
NP 13.2% 0.396 0.209 0.125
NP-OBJ 9.2% 0.319 0.271 0.114
NP-PN 2.5% 0.198 0.154 0.037
NP-SBJ 10.9% 0.372 0.321 0.156
PP 1.4% 0.244 0.100 0.022
QP 2.9% 0.750 0.190 0.168
VP 37.2% 0.228 0.316 0.113

Table 3: The Prediction Accuracy of Major Kinds of
Phrases by U-DOP and CCL On CTB10 v3.0

Here we also record the accuracy of each kind of
phrases predicted by U-DOP (my implementation)
and CCL(Seg07) when testing on CTB10v3.0. The
fifth column of Table 3 is the percentage of brackets
shared by U-DOP and CCL in predicting each kind
of phrases. From Table 3, we could see that U-DOP
performs much worse in predicting VP than CCL
when tested on CTB. Since VP takes up the high-
est proportion among all kinds of phases, U-DOP is
inferior to CCL in average even if it performs better
in most of other aspects when tested on CTB.

4 Conclusion

In all, we report our implementation of U-DOP in
detail especially in terms of dealing punctuation,
CYK n-best parsing algorithm, and evaluation mea-
sures. Experiment results show our implementation
achieves the higher f-score that others if evaluated
acording to (Bod07). Moreover, the comparison be-
tween U-DOP and CCL shows the defect of U-DOP
in predicting VP.

References

Rens Bod. An efficient implementation of a new dop
model. In Proceedings of the tenth conference on Eu-
ropean chapter of the Association for Computation-
al Linguistics - Volume 1, EACL ’03, pages 19–26,
Stroudsburg, PA, USA, 2003. Association for Compu-
tational Linguistics.

Rens Bod. Unsupervised parsing with u-dop. In Pro-
ceedings of the Tenth Conference on Computation-
al Natural Language Learning, CoNLL-X ’06, pages

85–92, Stroudsburg, PA, USA, 2006. Association for
Computational Linguistics.

Rens Bod. Linguistic relevance of unsupervised data-
oriented parsing. In Machine Learning and Cognitive
Science of Language Acquisition, June 2007.

Joshua Goodman. Efficient algorithms for parsing the
dop model, 1996.

Liang Huang and David Chiang. Better k-best parsing.
In Proceedings of the Ninth International Workshop
on Parsing Technology, Parsing ’05, pages 53–64,
Stroudsburg, PA, USA, 2005. Association for Compu-
tational Linguistics.

Vı́ctor M. Jiménez and Andrés Marzal. Computation
of the n best parse trees for weighted and stochastic
context-free grammars. In Proceedings of the Join-
t IAPR International Workshops on Advances in Pat-
tern Recognition, pages 183–192, London, UK, 2000.
Springer-Verlag.

Mark Johnson. Squibs and discussions: the dop estima-
tion method is biased and inconsistent. Comput. Lin-
guist., 28:71–76, March 2002.

Dan Klein. The unsupervised learning of natural lan-
guage structure. PhD thesis, Stanford, CA, USA,
2005. AAI3162386.

Dan Klein and Christopher D. Manning. A generative
constituent-context model for improved grammar in-
duction. In Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, ACL
’02, pages 128–135, Stroudsburg, PA, USA, 2002. As-
sociation for Computational Linguistics.

Dan Klein and Christopher D. Manning. Corpus-based
induction of syntactic structure: models of dependency
and constituency. In Proceedings of the 42nd Annual
Meeting on Association for Computational Linguistic-
s, ACL ’04, Stroudsburg, PA, USA, 2004. Association
for Computational Linguistics.

Dan Klein and Christopher D. Manning. Natu-
ral language grammar induction with a generative
constituent-context model. Pattern Recogn., 38:1407–
1419, September 2005.

Yoav Seginer. Fast unsupervised incremental parsing. In
Proceedings of the 45th Annual Meeting of the Asso-
ciation of Computational Linguistics, pages 384–391,
2007.

