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ABSTRACT

In this study, we investigate the break index labeling
problem with a syntactic-to-prosodic structure conversion.
The statistical relationship between the mapped syntactic
tree structure and prosodic tree structure of sentences in the
training set is used to generate a Synchronous Tree Substitu-
tion Grammar (STSG) which can describe the probabilistic
mapping (substitution) rules between them. For a given test
sentence and the corresponding parsed syntactic tree struc-
ture, thus generated STSG can convert the syntactic tree to
a prosodic tree statistically. We compare the labeling results
with other approaches and show the probabilistic mapping
can indeed benefit break index labeling performance.

Index Terms— STSG, break index, TTS

1. INTRODUCTION

Identifying the hierarchical prosodic constituents from text
plays an important role in Text-to-Speech (TTS) synthe-
sis. A number of rule-based models and stochastic models
are proposed to perform the prosodic analysis. Rule-based
approaches were adopted in earlier studies. For example,
Joan Bachenko [1] did prosodic phrasing by defining a set
of boundary location rules involving syntactic constituency,
adjacency to a verb and constituent length. Stochastic models
are widely used in more recent studies. Classification and
regression tree (CART) using features such as punctuation,
part-of-speech (POS) and pitch accent types are adopted to
predict break indices in [2], [3] and [4]. Markov model is
adopted in [5] and [6]. A more complex hierarchical sto-
chastic model is proposed in [7]. As for break index labeling
for Chinese, Min Chu proposed a bottom-up hierarchical ap-
proach based on CART using features that could be extracted
from text [8]. Jianhua Tao adopted both syntactic features

and acoustic features in [9]. Moreover, a more comprehen-
sive comparison was provided in [10].

The break index labeling is generally formulated as a
problem of sequential labeling in the conventional approaches.
Even though the syntactic tree is used for labeling, only the
POS, syntactic phrase types and the word position in phrase,
instead of the whole syntactic structure information, are used
as features for break labeling. Recently, Mohamed Abou-
Zleikha [11] applied tree decomposition to generate pitch
contour based on exemplars, where the prosodic-syntactic
correlated data and a dynamic unit size model by data-
oriented parsing [12] were used. This approach took more
syntactic information into account and achieved good results.
Thinking in tree structure can help fully exploiting the fea-
tures of the syntactic structure, such as siblings and ancestors,
and thus take a more global view into account when consider-
ing inserting breaks. Therefore, we propose to fully take
advantage of the syntactic tree structure and predict break
indices by studying the probabilistic relationship between the
syntactic structure and the prosodic structure. In this paper,
we adopt STSG, which is generated statistically to describe
the mappings between syntactic and prosodic structures, and
use Viterbi search to find the most probable corresponding
prosodic structure for the given syntactic structure of the test
sentence. Our idea stems from [13], which converts between
HPSG (Head-driven Phrase Structure Grammar) and CFG
(Context-Free Grammar) based on stochastic STSG.

2. PROSODIC STRUCTURE AND SYNTACTIC
PHRASE STRUCTURE

Prosodic structure for the sentence “可喜的是四川正在打破
这种意识 (The good news is that Sichuan are breaking this
notion)” is depicted as in Figure1(a). Each internal node is la-
beled with corresponding break indices from 0 to 4 which in-
dicate the duration of breaks between its adjacent child nodes.



Here are the concrete definitions of the break indices [10].
BI0: the non-breaks within a prosodic word; BI1: prosodic
word boundary; BI2: minor prosodic phrase boundary; BI3:
major prosodic phrase boundary; BI4: prosodic group bound-
ary. Since BI4 is always decided by the end mark of the sen-
tence, we only consider BI0∼BI3.

The syntactic phrase structure for the same sentence is
shown in Figure1(b). The internal nodes are labeled with con-
stituent labels indicating the different kinds of phrases they
dominate.

From Figure 1 we can see that both are trees, but with dif-
ferent structures. Our study is performed on a corpus, which
contains 9,939 sentences with manually labeled break indices
and syntactic phrase structures obtained by stanford parser 1

[14]. After excluding the top spans and unary spans, 24,109
out of total 65,043 unique spans in prosodic trees are cross-
ing with the spans of syntactic trees, while 25,598 out of total
55,502 unique spans in syntactic trees are crossing with those
of prosodic trees. There are 21,111 spans exactly matched
between prosodic trees and syntactic trees. Our approach
aims at identifying the mapping relations both crossing and
non-crossing between the syntactic structure and the proso-
dic structure and use these mapping rules to reconstruct the
prosodic structure out of a syntactic structure.

3. GENERATING STSG

A STSG rule is defined as a triple <source subtree, target
subtree, probability>. The subtree pairs could be extracted
as follows. For each pair of tree structures, the nodes that
dominate the same span in the pair of trees are identified as the
split nodes first and then the subtrees whose external nodes
are the split nodes are extracted. As in [13], if the tree pairs
include unary productions, the upper-most node of the chain
of the unary productions is selected as the split node.

For the latter example in Figure 1, the nodes underlined
are split nodes and they segment each tree structure into 13
fragments. Therefore 13 pairs of subtrees are generated and
they are listed in Table 1. Subtrees are represented in brackets.

For a STSG rule < t1, t2, p >, suppose T root(t) denote
the tree that has the same root label as t’s root , then p is
defined as

p =
Count(< t1, t2 >)

Count(< T root(t1), T root(t2) >)

Therefore, by concatenating the nonterminal leaves of a
tree with the roots of other subtrees providing the joint nodes
are labeled the same, a larger tree structure could be derived.

STSG can capture the probabilistic mappings between
syntactic and prosodic structures, but there are also other
factors which will affect the prosody, for example, the length
of the words. Words of only one character tend to form a

1http://nlp.stanford.edu/software/lex-parser.shtml

Table 1. STSG generated for Figure 1.
Syntactic Subtree Prosodic Subtree p
(ADJP(JJ)) (0(NOM)) 1
(ADVP(AD)) (0(ADV)) 1
(DEC) (AUX) 1
(IP(NP)(VP(ADVP)

(VP(VV)(NP))))
(2(1)(1(0)(0))(1)) 1

(IP(VP(VA))) (VER) 1
(NP(NN)) (0(NOM)) 0.5
(NP(CP(IP)(DEC))) (0(VER)(AUX)) 0.5
(NP(ADJP)(NP)) (1(0)(0)) 0.5
(NP(NR)) (1(0(NOM))) 0.5
(PU) (3(2(1(0(SYM))))) 1
(ROOT(IP(NP)(VP

(VC)(IP))(PU)))
(4(3(2(1(0)(0)))(2))(3)) 1

(VC) (0(VER)) 1
(VV) (0(VER)) 1

prosodic word with the character before or after them. Some
words such as “的”, “会” also need special attention. In order
to take these factors into account, the POS tags are extended
with suffix including the length of the word, specifically one
or not, and the characters of the word if it belongs to a special
group which contains {电,中,后,的,在,于,了,等,着,从,
但是,也,还,被,不,目前,今天,短波,简讯,接着,就是}.

4. DECODING

The decoding is to search for the most probable prosodic
structure, given the syntactic structure of the test sentence.
The probability of a constructed prosodic tree is defined as
the product of the applied STSG rules. The syntactic tree is
traversed bottom-up and rules that fit both the subtree root-
ed at the current node of the syntactic tree and the prosodic
subtrees already constructed are selected. The algorithm in
pseudo code is given in Algorithm 1.
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Fig. 2. Examples of Back-off strategy B, C, and E.
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Fig. 1. An example of prosodic tree structure and syntactic phrase tree structure. The nodes underlined are split nodes.

Algorithm 1 Decoding
Input:
The node in the syntactic structure of a test sentence: N
Denotation:
Prt, the prosodic tree structure.
Pht, the syntactic tree structure.
Rule(Pht, Prt, pr), a STSG rule containing the tree pair
Pht and Prt, and the probability p of the rule.
Chart(N) = (Prtroot∈0,1,2,3, proot∈0,1,2,3), the chart node
of N which contains the corresponding prosodic trees con-
structed, and each is of the maximum probability among pos-
sible prosodic trees with the same root label.
Procedure:

1: for each child node c of N do
2: call its decoding procedure to generate Chart(c)
3: end for
4: for each r(Pht, Prt, pr) whose r.Pht matches a subtree

st rooted at N do
5: p = r.pr
6: for each st’s leaf node i do
7: Let li be the label of the ith leaf node of r.Prt.
8: Let ci be the chart node of the ith leaf node of st.
9: p = p ∗ ci.pli

10: end for
11: Let l be the root label of r.Prt
12: if p > Chart(N).pl then
13: Let Chart(N).pl = p, Chart(N).P rtl = r.Prt
14: end if
15: end for
16: if Chart(N) can’t be generated then
17: Apply back off strategies.
18: end if

5. BACK OFF STRATEGIES

Because the generated STSG rules cannot cover a certain
number of source trees, we segment the sentences by punc-
tuation marks, such as “，”, “：”, and “、” to simplify the
structure, and add back-off strategies to relax the rules and
increase the coverage.

• Strategy A: The POS tags of the syntactic fragment in
the rule don’t need to match the corresponding POS leaf
nodes in the syntactic tree of the test sentence if the
POS tags of the prosodic fragment are exactly matched.

• Strategy B: When substituting the leaf node of the pro-
sodic fragment in the rule with the already constructed
prosodic root, return match if the leaf node matches the
single child of the root, as shown in Figure 2(a).

• Strategy C: When substituting the leaf node of the pro-
sodic fragment in the rule with the already constructed
prosodic root, return match if its break index is higher
than that of the target root and attach the root to the leaf
node, as shown in Figure 2(b).

• Strategy D: Return match if the POS tags of the pro-
sodic fragment’s leaf nodes without extended suffix
match.

• Strategy E: If no prosodic tree can be constructed for
the current syntactic phrase node, copy the constructed
prosodic tree of its single child, as shown in Figure 2(c).

6. EXPERIMENTS

The training set contains 8,939 sentences while the test set
contains 1,000 sentences. The precision, recall with each or



no back off strategy are represented in Table 2.

Table 2. A comparison of the performance when using dif-
ferent back-off strategies.

model
Percent

Fail
P&R BI0 BI1 BI2 BI3

None 12.8
Pre 90.3 72.9 50.4 80.2
Rec 80.1 83.0 48.3 72.1

A 10.6
Pre 90.2 72.2 50.2 78.3
Rec 78.3 82.5 48.3 71.0

B 12.4
Pre 90.3 72.8 50.3 79.5
Rec 79.5 82.9 48.2 72.0

C 7.7
Pre 89.6 71.4 48.9 76.5
Rec 76.0 81.7 47.7 70.0

D 11.2
Pre 89.4 72.6 49.7 79.3
Rec 79.6 82.1 47.8 71.9

E 12.5
Pre 90.3 72.8 50.5 80.1
Rec 79.9 82.9 48.4 72.0

All 4.2
Pre 89.0 70.6 48.1 74.7
Rec 74.3 80.8 47.4 68.9

Table 2 shows that back-off strategies increase the cov-
erage rate to 95.8% and also lower the performance slight-
ly. By applying all the back-off strategies, we achieved the
performance in Tables 3 and 4. The results show that BI2
is more difficult to predict than BI1 and BI3 because BI2 is
more ambiguous. BI1 is word boundary and BI3 is general-
ly labeled after a punctuation, while BI2 is the break within
a sub-sentence and depends on speaking style, the length of
sub-sentence and other various factors.

AvgCost [10] is used as a criterion.

AvgCost =

∑
WiCount(Ei)

Count(B)

Count(Ei) the number of BI errors equaling i which is de-
fined as the absolute difference between the predicted and
the “gold” (given) index. Wi represents the weight for the
error Ei. And here we assign W1 = 0.5, W2 = 1,W3 = 2.
Count(B) is the count of boundary sites.

From Table 4, we could see that our model performs bet-
ter than CRF without lexical features, but worse than that of
CRF with lexical features. Since no lexical information ex-
cept a few special words is included in our model, comparing
our performance with CRF1, the syntactic tree information
captured by STSG indeed improves the performance signifi-
cantly. Moreover, the difference between the performance of
CRF1 and CRF2 shows the importance of lexical information
in break index labeling. How to include lexical information
into our approach is our future research.

Although the Chinese data sets used in [10] and [8] are
not the same as ours, the sizes of the sets are similar (12000
sentences vs 9939 sentences) and the types of break index are
also BI0∼BI4. Comparing the results, the BI0 in our data is

much harder to predict and we obtain a better performance in
BI1 and BI3.

Table 3. Confusion matrix using all back-off strategies.
p0 p1 p2 p3

g0 1298 226 164 60
g1 114 2531 362 124
g2 40 651 818 215
g3 7 169 352 1190

Table 4. A comparison of the performance achieved in pre-
dicting breaks with previous results reported in [10] and [8]
and CRF. Ours is the test results using all the back off strate-
gies. Ours+bigram uses not only the back off strategies but
bigram to predict the failed 4.2% as well. CRF1 and CRF2
are results of CRF++2 using the same data. CRF1 adopts fea-
tures including POS and shared phrase ancestor of the adja-
cent words. CRF2 also uses the lexical features besides those
used by CRF1. “-” means not comparable or not available.

model P&R BI0 BI1 BI2 BI3 AvgCost

Ours
Pre 89.0 70.6 48.1 74.7

0.19
Rec 74.3 80.8 47.4 68.9

Ours+bigram
Pre 87.7 69.5 47.9 74.2

0.18
Rec 74.6 80.8 45.5 67.8

CRF1
Pre 74.3 67.3 52.1 74.4

0.22
Rec 60.3 78.0 46.9 74.8

CRF2
Pre 89.4 77.4 63.6 81.9

0.14
Rec 84.1 86.6 56.8 78.6

Bigram[8]
Pre 81.7 52.5 49.4 60.0

-
Rec 93.5 45.6 42.4 22.3

MM[8]
Pre 86.7 56.6 54.6 52.2

-
Rec 92.9 53.2 49.4 37.8

C4.5[8]
Pre 90.9 60.3 55.8 50.9

-
Rec 96.8 58.1 52.8 30.5

Hierarchical
CART[10]

Pre 95.3 65.6 57.4 82.7
-

Rec 95.7 58.6 65.6 68.1

Since the parsed trees used are output by a phrase parser
automatically and the parsing F measure for Chinese is only
around 83%, the error will affect the final results significantly.
Moreover, the training data is relatively small comparing with
the 40,000 sentences used in [13]. A larger training data set
will certainly improve the performance and the coverage.

7. CONCLUSIONS AND FUTURE WORK

We have shown how to take advantage of the structure infor-
mation between both prosodic and syntactic levels to predict
break index. The probabilistic mappings between these two

2http://crfpp.googlecode.com/svn/trunk/doc/index.html



structures are captured by STSG and the decoding is to search
for the most probable prosodic tree globally. Our results show
the syntactic tree structure information and the mapping re-
lations can indeed improve the performance, compared with
CRF without using the lexical features.

Since lexical information is very important in predicting
break indices, how to incorporate it into the current frame-
work still need to be further investigated. As finitely ambigu-
ous context-free grammars cannot be lexicalized with a tree-
substitution grammar [15], lexicalized Synchronous Tree Ad-
joining Grammars (STAG) might be adopted to take lexical
contexts into account. Moreover, since the syntactic trees and
the prosodic trees are relatively flat, head-centered binariza-
tion of the syntactic structure and binarization of the prosodic
tree in the direction that more spans can be shared will help to
generate more STSG rules and thus more source trees could
be covered during conversion.
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