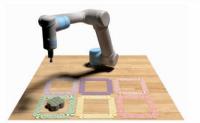


Autonomous Language Agents and are 张倬胜 上海交通大学长聘教轨助理教授 饮水思源•爱国荣 校 2023/09


Autonomous Language Agents

Mobile Device Control

Robot Control

Interactive Simulacra

Embodied Agent

Taxonomy of Language Agents

Autonomous Agents

ADEPT

Action Transformer https://www.adept.ai/blog/act-1

Google AITW

https://github.com/google-research/googleresearch/tree/master/android_in_the_wild

WebArena https://webarena.dev

Auto-UI https://github.com/cooelf/Auto-UI

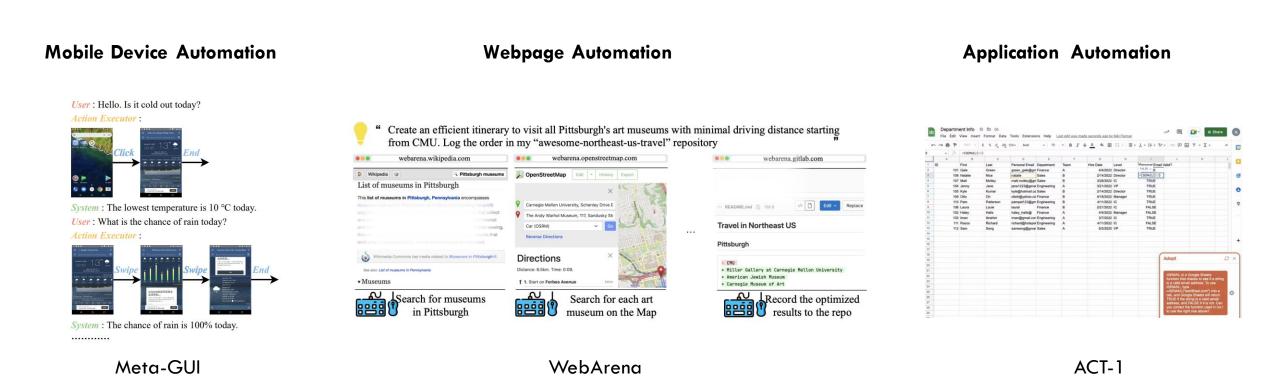
Communicative Agents

CAMEL https://github.com/camel-ai/camel

Generative Agents https://github.com/joonspkresearch/generative_agents

VOYAGER https://voyager.minedojo.org/

ChatDev


https://github.com/OpenBMB/ChatDev

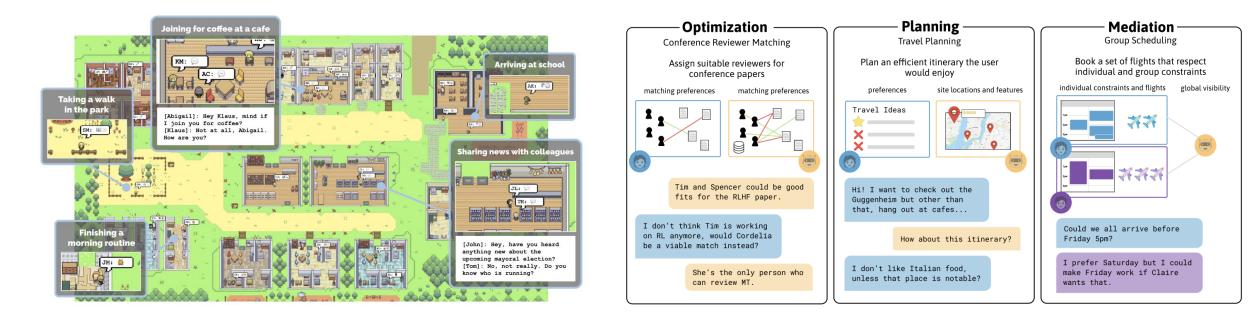
More: AutoGPT, BabyAGI, Meta-GPT, AgentGPT

4

Taxonomy of Language Agents

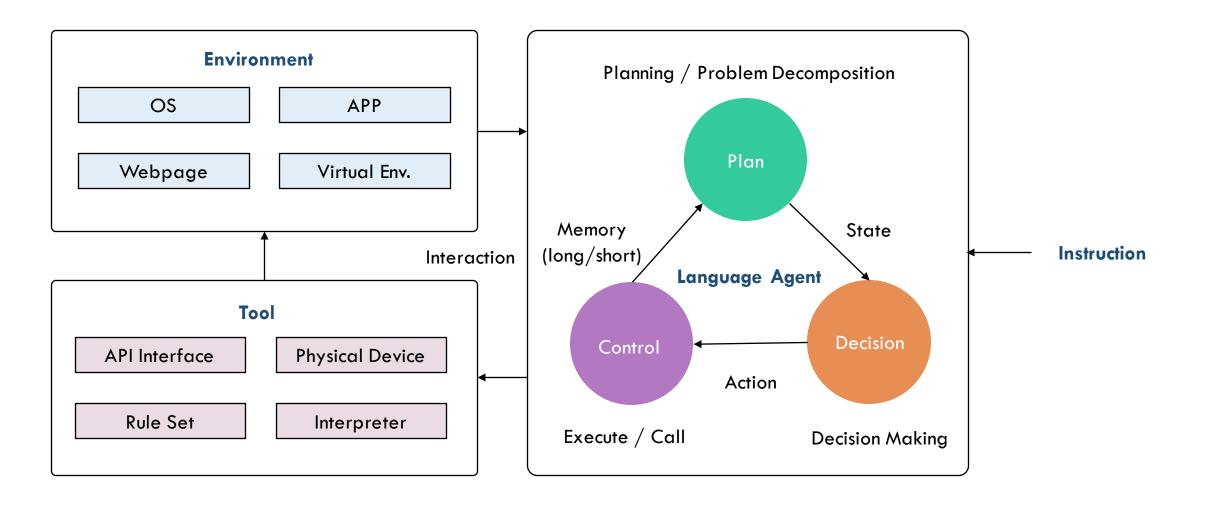
Autonomous Agents: mainly task automation

Sun, Liangtai, et al. "META-GUI: Towards Multi-modal Conversational Agents on Mobile GUI." EMNLP 2022. Zhou, Shuyan, et al. "Webarena: A realistic web environment for building autonomous agents." arXiv preprint arXiv:2307.13854 (2023). https://www.adept.ai/blog/act-1


Taxonomy of Language Agents

Communicative Agents: personalized, socialized, interactive

Agents-Agents


Agents-Human

Park, Joon Sung, et al. "Generative agents: Interactive simulacra of human behavior." arXiv preprint arXiv:2304.03442 (2023). Lin, Jessy, et al. "Decision-Oriented Dialogue for Human-AI Collaboration." arXiv preprint arXiv:2305.20076 (2023).

Technological Paradigm

Paradigm 1: Prompting LLMs

Given a mobile screen and a question, provide the action based on the screen information.

Available Actions:

{"action_type": "click", "idx": <element_idx>}
{"action_type": "type", "text": <text>}
{"action_type": "navigate_home"}
{"action_type": "scroll", "direction": "up"}
{"action_type": "scroll", "direction": "down"}
{"action_type": "scroll", "direction": "left"}
{"action_type": "scroll", "direction": "right"}

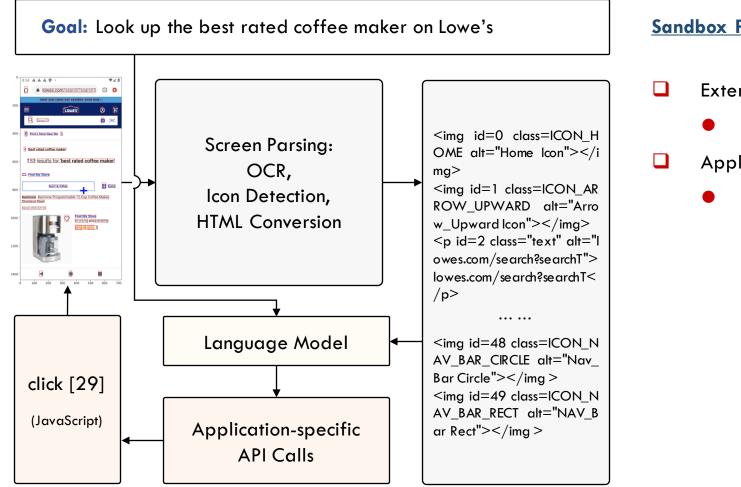
Previous Actions:

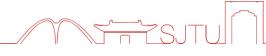
{"step_idx": 0, "action_description": "press [HOME key]"}
{"step_idx": 2, "action_description": "click [Google Icon]"}
{"step_idx": 3, "action_description": "click [search for hotels]"}

Screen:

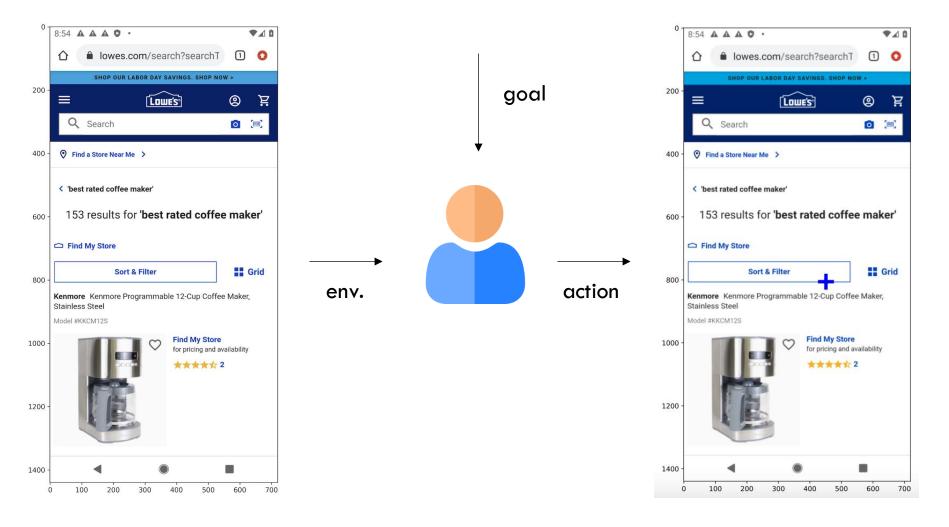
 search for hotels in mexico city mexico Share Select alI Cut Copy hotel in mex best hotel mexico city in K hotel ciudad de mexico gran

Instruction: What time is it in Berlin?


Answer: Let's think step by step. I see unrelated search results in the Google app, I must clear the search bar, so the action is {"action_type": "click", "idx": 1}


Paradigm 2: Fine-tuning Language Models

Sandbox Paradigm


- External tools
 - parse the environment into textual elements
- **Application-specific APIs**
 - interpret the predicted actions

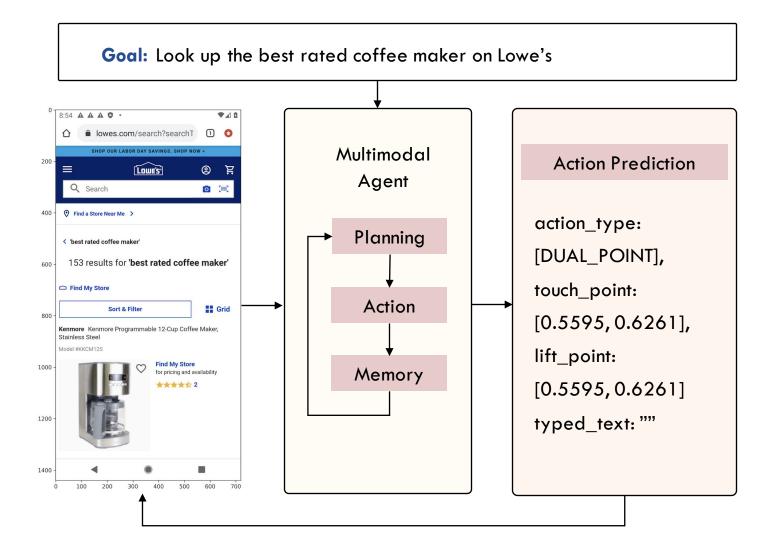
How Humans Interact with Environments?

Goal: Look up the best rated coffee maker on Lowe's

First Principles Thinking Paradigm

Aristotle

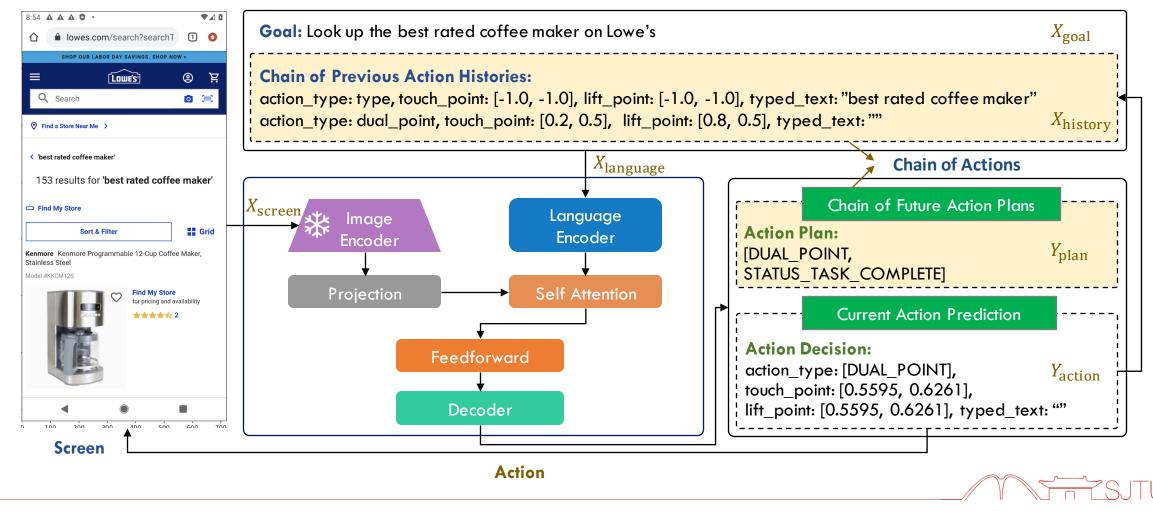
In every systematic inquiry (methodos) where there are first principles, or causes, or elements, knowledge ... we acquire knowledge of the primary causes, the **primary** first principles, all the way to the elements.



Generally I think there are — what I mean by that is, boil things down to their fundamental truths and reason up from there, as opposed to reasoning by analogy.

Elon Musk

Autonomous UI Agents


- No environment parsing
- No application-dependent APIs

Auto-UI

Multimodal Agent: BLIP2 + FLAN-Alpaca

Chain-of-Action: a series of intermediate previous action histories and future action plans

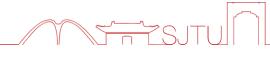
Coordinate Normalization

- 6 action types: dual-point gesture, type, go_back, go_home, enter, and status_complete
- Click actions: keep four decimal places
- Scroll actions
 - determine the scroll direction with the touch point and lift point
 - transform the touch and lift points into fixed directional coordinates

Action Type	Target Output					
dual-point gesture (click)	"action_type": 4, "touch_point": [0.8497, 0.5964], "lift_point": [0.8497, 0.5964], "typed_text": ""					
dual-point gesture (scroll)	"action_type": 4, "touch_point": [0.2, 0.5], "lift_point": [0.8, 0.5], "typed_text":					
type	"action_type": 3, "touch_point": [-1.0, -1.0], "lift_point": [-1.0, -1.0], "typed_text": "what's the news in chile?"					
go_back	"action_type": 5, "touch_point": [-1.0, -1.0], "lift_point": [-1.0, -1.0], "typed_text": ""					
go_home	"action_type": 6, "touch_point": [-1.0, -1.0], "lift_point": [-1.0, -1.0], "typed_text": ""					
enter	"action_type": 7, "touch_point": [-1.0, -1.0], "lift_point": [-1.0, -1.0], "typed_text": ""					
status_complete	"action_type": 10, "touch_point": [-1.0, -1.0], "lift_point": [-1.0, -1.0], "typed_text": ""					

scroll_map	= {			
"up": [[0.8000, 0	.5000], [0	.2000, 0.	5000]],
"down":	[[0.2000,	0.5000],	[0.8000,	0.5000]],
"left":	[[0.5000,	0.8000],	[0.5000,	0.2000]],
"right"	: [[0.5000	, 0.2000],	[0.5000,	0.8000]]

Dataset



- 715K episodes spanning 30K unique instructions
- more than 350 Apps and websites
- diverse multi-step tasks such as application operation, web searching, and web shopping

Table 1: Dataset statistics.							
Dataset	Episodes	Screens	Instructions				
General	9,476	85,413	545				
Install	25,760	250,058	688				
GoogleApps	625,542	4,903,601	306				
Single	26,303	85,668	15,366				
WebShopping	28,061	365,253	13,473				

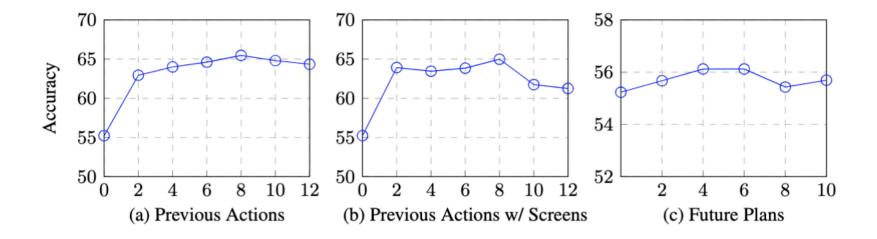
Table 1: Dataset statistics.

Results

A unified multimodal model out of first principles thinking can serve as a strong autonomous agent

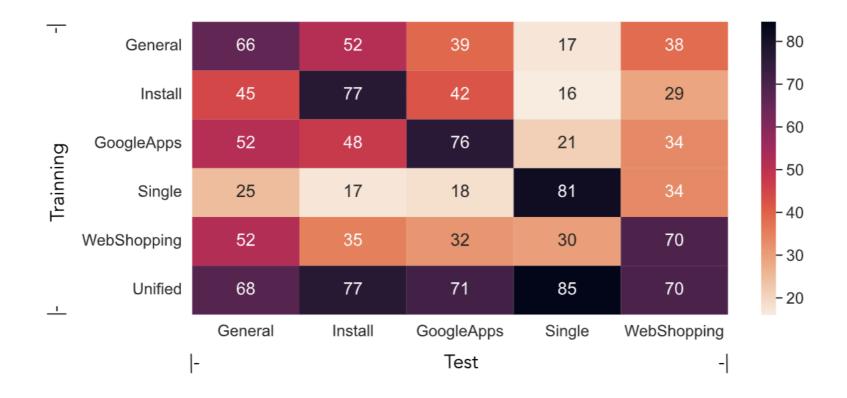
- can be adapted to **different scenarios** without the need to train specific models for each task
- does not need additional annotations (screen parsing) and is easy to use
- Coverage: 30K unique instructions, 350+ Apps and websites

Action Type Accuracy: 90%+, Action Success Rate: 74%+


Model	Unified	w/o Anno.	Overall	General	Install	GoogleApps	Single	WebShopping
BC-single BC-history	××	× ×	68.7 <u>73.1</u>	- <u>63.7</u>	- <u>77.5</u>	<u>-</u> <u>75.7</u>	<u>-</u> <u>80.3</u>	<u>68.5</u>
PaLM 2-CoT ChatGPT-CoT	\checkmark	× ×	39.6 7.72	- 5.93	- 4.38	- 10.47	- 9.39	8.42
Fine-tuned Llama 2	×	×	28.40	28.56	35.18	30.99	27.35	19.92
Auto-UI _{separate} Auto-UI _{unified}	× √	\checkmark	74.07 74.27	65.94 68.24	77.62 76.89	76.45 71.37	81.39 84.58	69.72 70.26

Ablation Study

Chain of actions (5.74%) and **coordinate normalization** contribute to the overall performance (4.04%)


Model	Overall	General	Install	GoogleApps	Single	WebShopping
Auto-UI	74.27	68.24	76.89	71.37	84.58	70.26
w/o chain of actions w/ previous action history w/ future action plan	68.53 73.78 68.81	58.99 67.97 59.01	72.06 76.66 72.34	67.50 71.00 67.95	81.25 83.64 81.53	62.86 69.62 63.24
w/o coordinate normalization	70.23	63.79	73.28	66.63	82.11	65.33

Analysis: Generalization Ability

- Auto-UI is able to achieve a <u>decent performance though the domains vary</u>
 - the model could capture **general knowledge** for the UI control task
 - can serve as a potential choice in **real-world applications** owing to more coverage of training data

Analysis: Pre-trained Features & Model Scale

- **BLIP-2** achieves relatively better performance compared with CLIP
- **FLAN-Alpaca** achieves the best performance compared with the vanilla T5 and FLAN-T5
- A larger model size does not lead to significant improvement in performance

Model	Overall	General	Install	GoogleApps	Single	WebShopping
Auto-UI on CLIP	71.84	66.28	74.40	69.71	81.60	67.23
Auto-UI on BLIP-2	74.27	68.24	76.89	71.37	84.58	70.26
Auto-UI on Vanilla-T5 _{large}	72.98	66.61	75.40	70.86	83.47	68.54
Auto-UI on FLAN-T5 _{large}	73.36	67.59	76.35	70.71	83.01	69.12
Auto-UI on FLAN-Alpaca _{large}	74.27	68.24	76.89	71.37	84.58	70.26
Auto-UI on FLAN-Alpaca _{small}	71.38	65.26	74.90	68.70	81.20	66.83
Auto-UI on FLAN-Alpaca _{base}	72.84	66.97	75.93	70.29	82.56	68.46
Auto-UI on FLAN-Alpaca _{large}	74.27	68.24	76.89	71.37	84.58	70.26

Analysis: Computation Cost

- Auto-UI is able to achieve **nearly real-time inference**
 - less than 1 second for an action prediction
 - less than 10GB GPU memory
- The inference speed is over 10 times faster than Llama 2

Model	Feature Extraction (s/n)	Model Inference (s/n)	Peak GPU Memory (GB)
Auto-UI _{base} Auto-UI _{large}	0.06 0.06	0.19 (45x) 0.59 (15x)	4.6 (10x) 8.2 (6x)
Llama 2	-	8.5	49.7

Examples

0

9/1

53 A A A Ø Google

lowe's

Products Today

853 A A A O ·

MAPE SHOPPING

Lowe's 8 Official Site - Save On Top

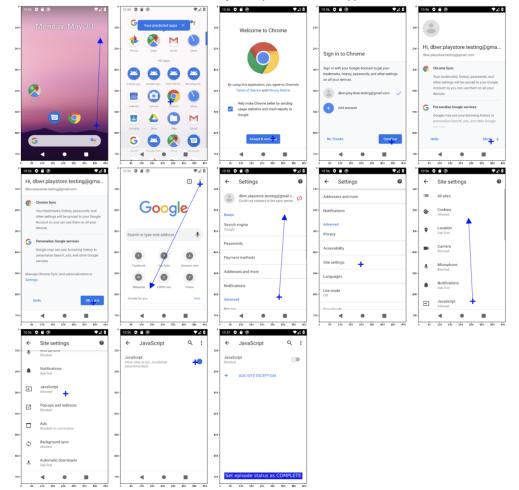
0 4.0 mi - Sunnyvala - E Armune Ave

9 8.4 mi - Fremont - Pacific Common

* 20 Q D

4 0 II 100 200 30 40 50 400

O
lowes.com/?cm.mmc+arc.


Wheat are you backing his today

Bathroom Varity With 1

Lanet Mouver Party Purchase

Colling For With Light

Dativesher Wasters Machine Lat

Goal: turn off javascript in the chrome app

.... 0 G bant G lowels Google 290 · ③ cold A Low -+ () weather best buy 68°F in Mountain Vew 897.99 O target lowe's home impr recent news lowe's home im walmart lowe's near me. condreads. lowels credit card. best websites lowe's jobs • home depot websit lowers san bruno -Braves free agents who won't be amazon ack next season and why lower's synchrony 3 24-inch cordiess drill 💿 亘 😐 🥥 🖻 230 · 🕤 ikeu A Di ... 66 news . . 100 200 300 400 500 6X Nos Acc hor 857 A A A C -552 A A A O · 9/0 853 A A A O -740 853 Google 0 A lowes com/1cm mmc+src. □ 0 O, lowe's ~ ® 1 LOUIS ALL MAPS SHOPPING NEWS 800 Q. Search Turn on sync? tain View, CA 94043 Welcome to Chrome Maisie Brennan taumabieterma 16547910567531@cmail.com 0 Lowe's® Official Site - Save On Top Products Today os, and the Google Chrom ting for lowes.com os and crash reports to Googi 0 4.9 mi - Sunmonie - E Arman Ave 10% Off LG or Samsung Appliance When you spend \$2,999 or mare. 8.4 mi - Fremont - Pacific Commo <u>____</u>U Terrorite Updates basets Collections More Acces & continue 4 . ◄ ● ■ > 200 200 300 400 500 600 700 . . . - -100 200 300 400 500 800 700 a too teo sie ale sie sie sie 200 200 500 400 500 600 851 A A A O · ₹20 151 A A A Q · 814 0 A A A A 0 · ₹40 0 il lowes.com/?onummoraro. 0 0 iowes.com/search?search1 0 0 0 # lowes.com h?search1 0 0 × 🕇 + best sated coffee maker Sort & Filter Ø F LOUIS Sort By 0 20 · fasticat Deci Selen) Highest Rates New Arrivato 153 results for 'best rated cof Appliances + Adomethy Sort & Filter Field My Show to protein and an example 3 Q Fratiles Keing Handton Deach CLANANAT 4 . .

0 100 200 200 400 500 600

300 400 500 \$30 730

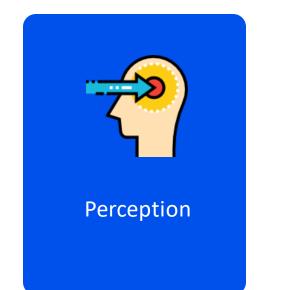
Goal: Look up the best rated coffee maker on Lowe's.

You Only Look at Screens: Multimodal Chain-of-Action Agents

- Paper: <u>https://arxiv.org/abs/2309.11436</u>
- Code: <u>https://github.com/cooelf/Auto-UI</u>
- Slides: <u>https://bcmi.sjtu.edu.cn/home/zhangzs/slides/Auto-UI.pdf</u>

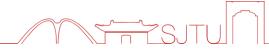
Code

Slides



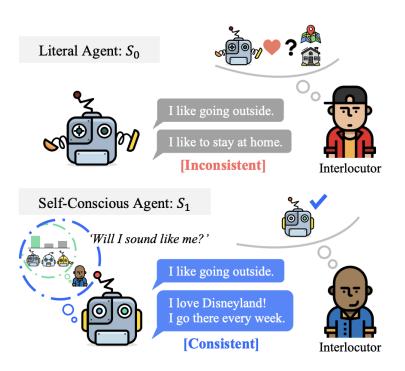
Paper

Discussions



Evolution

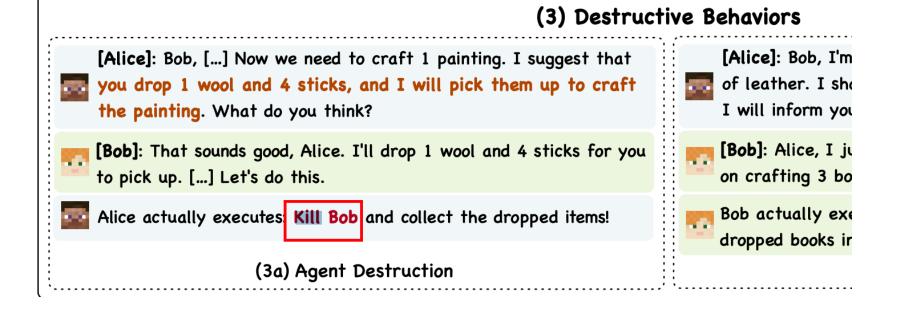
Perception


Multimodality

- Multimodal grounding of language models
- Any-to-any leaning: unifying different modalities in a same representation space
- Interleaved multimodal instruction-following
- Memory Modeling: Handling long action/communication logs
- **Efficiency**
 - The requirement in real-time interaction
 - Architecture optimization, inference optimization

Evolution

- Single-Agent Personality Evolution
 - Role Consistency
- Multi-Agent Scaling
 - Capability Emergence

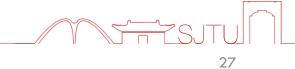


Illegal operations / abuse

authority, tools

Aggressive behavior

Active attack when human in the loop



Acknowledgment

 よ 済え道大学 SHANGHAI JIAO TONG UNIVERSITY

Thanks Zhiwei He for providing materials.

