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Abstract—Recent large-scale hierarchical classification tasks typically have tens of thousands of classes on which the most widely

used approach to multiclass classification—one-versus-rest—becomes intractable due to computational complexity. The top-down

methods are usually adopted instead, but they are less accurate because of the so-called error-propagation problem in their classifying

phase. To address this problem, this paper proposes a meta-top-down method that employs metaclassification to enhance the normal

top-down classifying procedure. The proposed method is first analyzed theoretically on complexity and accuracy, and then applied to

five real-world large-scale data sets. The experimental results indicate that the classification accuracy is largely improved, while the

increased time costs are smaller than most of the existing approaches.

Index Terms—Large-scale hierarchical classification, metalearning, ensemble learning, metaclassification, top-down method, text

classification
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1 INTRODUCTION

MULTICLASS classification—classifying samples into mul-
tiple predefined classes—is a fundamental task in

both machine learning and data mining domains [1]. For
example, each document in the Reuters-215781 corpus is
assigned one or more labels from 120 predefined classes
such as business, sports, and military.

The ensemble method of one-versus-rest is the most

widely adopted solution for multiclass classification (see

Fig. 1a) [2], [3]. First a binary-class classifier fi ði ¼ 1; . . . ; nÞ,
named base classifier, is trained for each class ci to predict

whether an input sample x belongs to this class; then

thresholding strategies are employed to decide the predicted

labels according to the confidence scores of the base

classifiers. Two commonly used thresholding strategies are

score-cut (S-cut) that accepts the classes whose scores

are larger than a predefined threshold, and rank-cut (R-cut)

that accepts the classes whose scores are among the top-r (r is

a predefined integer) [2].
In recent years, two types of classification strategies have

been developed for multiclass classification problems. One

is to reduce the computational complexity on the tasks that

have large numbers of predefined classes, such as tens

of thousands; usually hierarchies are used to organize the

classes, so these tasks are called large-scale hierarchical

classification. The examples include categorizing patent

documents into the taxonomy of the International Patent

Classification [4], [5], [6] and categorizing web pages into the

directories of the Open Directory Project or Yahoo! [7], [8].
The top-down methods which organize base classifiers

hierarchically are widely adopted for large-scale hierarch-

ical classification (see Fig. 1b) [9], [10], [11], [12], [13], [14].

They classify a sample x by filtering it down a tree of base
classifiers fi ði ¼ 1; . . . ; pÞ from the root node f1. For each

parent node where this sample arrives, those child nodes

whose confidence scores (produced by the base classifiers)

pass the thresholding strategies will carry it on. The bottom

leaf nodes cj ðj ¼ 1; . . . ; nÞ where the sample terminates are

the predicted labels [8], [11], [12]. The top-down

method employing the S-cut strategy, named S-cut top-

down (ScutTD), is usually used in multilabeled classifica-

tion, and the one employing the R-cut strategy (r ¼ 1),

named R-cut top-down (RcutTD), is usually used in single-

labeled classification.
The computational complexity of the top-down methods

is the logarithm of the number of classes [8], [15], while that

of the one-versus-rest method is linear to the number of

classes. As an evidence, in a classification experiment on

492,617 training documents, 275,364 test documents, and

132,199 categories of Yahoo!, the former costs only 2.1 hours

for training and 0.12 hours for classifying, while the latter

costs 310 hours for training and 54 hours for classifying [8].
The other type of classification strategy on multiclass

classification is to raise the classification accuracy of one-

versus-rest through metaclassification (see Fig. 1c) [16], [17],

[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29].

Metaclassification takes the outputs of base classifiers as

inputs to better learn target signals. First, base classifiers

fij ði ¼ 1; . . . ; n; j ¼ 1; . . . ; mÞ are trained for each class ci by

employing different types of classifiers or manipulating

features. Then, metaclassifier gi is trained for each class ci

500 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 3, MARCH 2014

. X.L. Wang, H. Zhao, and B. L. Lu are with the Center for Brain-Like
Computing and Machine Intelligence, Department of Computer Science
and Engineering, MOE-Microsoft Key Laboratory for Intelligent Comput-
ing and Intelligence Systems, Shanghai Jiao Tong University, Room 431,
Dian Xin Building 3, 800 Dong Chuan Road, Min Hang District,
Shanghai 200240, P.R. China.
E-mail: arthur.xl.wang@gmail.com, {zhaohai, blu}@cs.sjtu.edu.cn.

Manuscript received 11 Nov. 2012; revised 29 Jan. 2013; accepted 29 Jan.
2013; published online 13 Feb. 2013.
Recommended for acceptance by B.C. Ooi.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2012-11-0763.
Digital Object Identifier no. 10.1109/TKDE.2013.30.

1. http://www.daviddlewis.com/resources/testcollections/reuters
21578/.

1041-4347/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society



by learning the predictions of all base classifiers, i.e., an
m� n matrix.

This paper joins these two types of classification strategy
through exploring the usage of metaclassification in the top-
down methods (see Fig. 1d). To the best of our knowledge,
this topic has not been explored before. In this paper, a
meta-top-down method (MetaTD) that is more accurate
than the normal top-down methods2 is proposed.

The motivation of MetaTD is that metaclassification can
help to raise the classification accuracy of the normal top-
down methods, which have a well-known deficiency of
classification accuracy. Their accuracy is usually lower than
the one-versus-rest method [13], [14], [15], [30]. As an
evidence, in the PASCAL3 challenge on large-scale hier-
archical text classification4 in 2009, flat methods rank
highest, hybrid methods rank next, and the normal top-
down methods rank the lowest [31].

The accuracy deficiency of the normal top-down methods
is mainly caused by their nonrobust classifying procedure
that consists of multiple cascaded decisions about which
child nodes should be invoked from a parent node. Each of
these decisions is made based only on the score of one base
classifier, and is not changeable afterward. Thus, any wrong
decision inevitably leads to wrong predictions. This problem
is so-called error propagation [13], [30]. Sun et al. call a subset
of this problem—mistakenly rejecting a child node at high

layers—a blocking problem [32]. Liu et al. draw an analog
between this procedure and a pachinko machine [8].

To relieve error propagation, the proposed MetaTD
employs metaclassification to fuse the scores of all the
base classifiers instead of making arbitrary cascaded
decisions. The framework is to encode the scores along
a root-to-leaf path into a feature vector, and to employ a
metaclassifier to predict whether the corresponding leaf
node is a correct label.

Note that there are two kinds of hierarchical classifica-
tion tasks in real-world applications. One kind is manda-
tory leaf-node classification, where only the leaf nodes are
valid labels [33], [34], [35]. In contrast, the other is
nonmandatory leaf-node classification, where both the
internal nodes and the leaf nodes are valid labels [8], [36].
In this paper, we consider the first kind—mandatory leaf-
node classification.

The main contributions of this paper are as follows:

. Propose a meta-top-down method for large-scale
hierarchical classification.

. Provide accuracy and complexity analysis on the
proposed method.

. Achieve high classification accuracies on five real-
world data sets.

The remainder of this paper is organized as follows: The
proposed MetaTD and the normal top-down methods are
presented and analyzed in Section 2. We then examine them
with five real-world data sets in Section 3. After that, related
work on top-down methods and metaclassification is
discussed in Section 4. Finally, we conclude this paper
with a description of future work in Section 5.
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Fig. 1. The meta-top-down method combines top-down hierarchial classification and metaclassification to achieve high classification accuracy on the
tasks that have large numbers of predefined classes.

2. The normal top-down methods refer to ScutTD and RcutTD (r ¼ 1) in
this paper.

3. Pattern Analysis, Statistical Modeling, and Computational Learning
(PASCAL) is an academic organization funded by the European Union.
http://www.pascal-network.org.

4. http://lshtc.iit.demokritos.gr/.



2 METHODS

In this section, we first review the normal top-down
methods and then present MetaTD in detail. After that an
example is provided to illustrate MetaTD. Finally, the
classification accuracy and computational complexity of
MetaTD are analyzed.

2.1 Normal Top-Down Methods

Suppose H is a hierarchy of classes, which is a set of parent-
child relations,

H ¼ fðp; cÞ j p is a parent node;

c is one of its child nodeg;

where ðp; cÞ is called a parent-child relation.
ScutTD consists of the following three steps, while

RcutTD omits the second step. Suppose T , D, and E are
training, development, and test sets, respectively, where
labels of the samples in development sets are available to
classification systems for tuning parameters.

First, one base classifier per each parent-child relation
ðp; cÞ, noted as fc, is trained through the training set Tpc
as follows,

Tpc ¼ fðx; yÞ j x 2 Tp; y ¼ þ1 if x 2 Tc;
y ¼ �1 otherwiseg;

ð1Þ

where Tp and Tc are the subsets of T which consist of the
samples belonging to node p and c.

Second, the threshold values required by ScutTD are
tuned on D. The methods for this step actually have
alternatives. Early researchers such as [10], [33] employ a
universal threshold value for all the base classifiers at a
same layer. In contrast, recent researchers such as [8], [14]
employ a different threshold value for each base classifier
to achieve high classification accuracy. They take micro-F1

as the optimization target to balance the precision and
recall of a node’s prediction, where micro-F1 is a widely
used performance measurement for multilabeled classifi-
cation [1]. Here, we adopt the recent method, formulated
as follows:

tc ¼ argmax
t

F1ðDpc; fc; tÞ

¼ argmax
t

2P ðDpc; fc; tÞRðDpc; fc; tÞ
P ðDpc; fc; tÞ þRðDpc; fc; tÞ

;

P ðDpc; fc; tÞ ¼
nr

jfx j ðx; yÞ 2 Dpc; fcðxÞ � tgj
;

RðDpc; fc; tÞ ¼
nr

jx j ðx; yÞ 2 Dpc; y ¼ 1j ;

nr ¼ jfx j ðx; yÞ 2 Dpc; fcðxÞ � t; y ¼ 1gj;

ð2Þ

where:

. F1, P , and R are the micro-F1, precision and recall,
respectively;

. tc is the optimized threshold of node c, and t is a
threshold candidate;

. fc is the base classifier of the node c, and fcðxÞ
represents the confidence score given by fc for the
sample x;

. Dpc is a sample set consisting of the development
samples belonging to the node p and those also
belonging to the node c are taken as positive, similar
to the Tpc defined by (1);

. nr is the number of correctly predicted labels.

Third, the test samples in E are classified through the
algorithm presented in Fig. 2. With the trained base
classifiers fc and the thresholds tc (only required by
ScutTD), the test set E can be classified.

2.2 Meta-Top-Down Method

The proposed meta-top-down method employs metaclassi-
fication to reclassify samples based on the output of the
normal top-down methods. MetaTD takes the confidence
scores of the base classifiers along a root-to-leaf path as the
metalevel input, and takes whether the leaf node is a correct
label as a metalevel target. This metaclassification task is
formulated as follows:

Mðu; lÞ ¼ ðMxðux; lÞ;Myðuy; lÞÞ;
Mxðux; lÞ ¼ fðni; fniðuxÞÞ j ni 2 plg;

Myðuy; lÞ ¼
þ1; l 2 uy
�1; l 62 uy

;

� ð3Þ

where:

. M is a metasample that consists of an inputMx and
an output My;

. u ¼ ðux; uyÞ is a base sample, here ux is the input,
and uy is the output set, a set of correct labels;

. l is a leaf node, thus it is also a validate class label for
base samples;

. pl ¼ fni1 ; ni2 ; . . . ; nikg is a path from the root to l,
where ni1 is the root, nik ¼ l, and ðnia ; niaþ1

Þ 2 H;
. fnia is the base classifier of the node nia .

However, (3) causes a problem of computational com-
plexity on large-scale hierarchical classification tasks as it
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Fig. 2. S-cut and R-cut top-down algorithms.



produces a metasample for each class. For example, the
International Patent Classification (IPC) hierarchy has over
49,187 labels, thus (3) generates over 49,187 metasamples
from a single base sample. To address this problem, we
propose a pruning method that selects a small number of
label candidates for each base sample, noted as LðuxÞ (see
Section 2.2.2 presents the pruning method).

MetaTD is based on the above settings, and its workflow
is presented in Fig. 3. The training phase consists of three
steps as follows:

1. Train base classifiers fc on the training set T , which
is the same as the normal top-down methods.

2. Construct a metatraining set with the base classifiers
and the development set D through the pruning
method LðuxÞ,

MT ¼ [u2DfMðu; lÞ j l 2 LðuxÞg:

3. Train a metaclassifier g on MT .

The whole training phase requires the base-level training
set T , the development set D, and the description of the
hierarchy H. It produces a base classifier fc per child node c
and a metaclassifier g.

The classifying phase also consists of three steps as
follows:

1. Construct a group of metasamples from a test base
sample ux (its label set uy is unknown),

ME ¼ fMxðux; lÞ j l 2 LðuxÞg:

2. Apply the metaclassifier g to the metasamples,

gðMEÞ ¼ fgðMxðux; lÞÞ j l 2 LðuxÞg
¼ fgux;l j l 2 LðuxÞg:

3. Interpret the predictions into base-level labels.
Thresholding strategies are employed again. In
single-labeled classification tasks, the label of the
largest metascore is taken as the prediction (R-cut
strategy); in multilabeled tasks, the labels whose
metascores are larger than the threshold value are
taken as the predictions (S-cut).

The remaining problems are how to implement the

metasample representations Mxðux; lÞ and how to select

label candidates LðuxÞ. The solutions are presented in the

following two sections.

2.2.1 Representations of Metasamples

This section describes how the metasamples are made into

numerical vectors that are ready to be used by metaclassi-

fiers. Sparse vectors are adopted to represent metasamples.

The conversion procedure consists of the following steps:
First, all the nodes except the root are numbered with

integers. These integers are taken as the dimensions to

encode the confidence scores of base classifiers.
Second, sparse vectors are augmented with additional

features that are the attributes of the root-to-leaf paths. The
intuition is that these attributes are helpful to decide
whether a path is correct, i.e., leading to a correct class
label. The following four additional features are employed
according to our pilot experiments:

1. the average score of the nodes along a path;
2. the minimum score of the nodes along a path;
3. the average ranking of the scores along a path

sar ¼
1

l

Xl
i¼1

ri;

where l is the length of the path and ri is the ranking

of node is score (the first is counted as 0, the second

as 1, and etc.); and
4. the fraction of the nodes whose scores exceed

ScutTD’s thresholds, named pass-rate.

The effects of average ranking and pass-rate are analyzed in

Section 2.4.1.
In the end, the values of metafeatures are mapped into

specific intervals to enhance the training of metaclassifiers
[26], [27], [37]. Standard scaling function and Platt sigmoid
fitting [38], [39] have been tried in our pilot experiments,
and eventually the following mixed scaling method is
employed. For the additional features, the standard scaling
function is used as follows:

zk ¼
sk � �k
�k

;
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Fig. 3. Workflows of MetaTD: (a) training phase and (b) classifying phase.



where sk is the value of the kth feature in feature vectors
and �k and �k are the corresponding mean and variance,
respectively.

For the basic features, a simplified sigmoid function is
used [39], [40],

zn ¼
1

1þ e�ðsn��nÞ ;

where sn is a score at a node n, and �n is the average
score at node n.

2.2.2 Selection of Label Candidates

How should label candidates be selected? In fact, the
method of selecting label candidates is a kind of a
classification method as both of them take in samples and
give out the labels that are most likely to be right. However,
the method of selecting label candidates should output
more labels than a normal classifying method, to provide a
wider coverage of the truly correct ones. To find such
a “loose” classifying method, we refer to RcutTD with a
parameter r � 2 (see Fig. 2). RcutTD with r ¼ 1 predicts one
label per sample, thus it is normally used in single-labeled
classification. RcutTD with r � 2 predicts multiple labels
per sample which are taken as label candidates by MetaTD.

2.3 Illustration of Meta-Top-Down Method

This section illustrates MetaTD with a specific example.
Suppose a hierarchical classification task has the hierarchy
of classes shown by Fig. 4a. The nodes are numbered from
n0 to n7 where n0 is the root and the leaf nodes n3, n4, n6,
and n7 are valid labels.

Suppose that a tree of base classifiers has been built
through top-down training, and a sample takes n3 and n7 as
its correct labels. Fig. 4b shows that each base classifier
yields a relevant score s1-s7.

MetaTD considers classifying this sample as picking
out the leaf nodes that are most likely to be correct. Each
leaf node is converted to a metasample—the target is
whether this leaf node is correct and the features are the
scores of the base classifiers along the path (see Fig. 4b).
For this example, the following four metasamples can
be generated:

true n0 ! ðn1; s1Þ ! ðn3; s3Þ;
false n0 ! ðn1; s1Þ ! ðn4; s4Þ;
true n0 ! ðn2; s2Þ ! ðn5; s5Þ ! ðn7; s7Þ;
false n0 ! ðn2; s2Þ ! ðn6; s6Þ:

ð4Þ

These metasamples are then interpreted into sparse
vectors. Suppose that n1 to n7 are numbered with integers

1; 2; . . . ; 7, respectively, then sparse vectors can be gener-
ated as Table 1.

A metaclassifier is trained by a set of metasamples that
are derived from multiple base-level samples as above.

Afterward this classifier is applied to the metasamples
derived from a base-level test sample to predict a score for
each label candidate. In this way, MetaTD fulfills the

original base-level classifying task.

2.4 Performance Analysis

In this section, we analyze the classification accuracy and
computational complexity of the proposed MetaTD. During

the accuracy analysis, we first formulate the accuracy of the
normal top-down methods and the proposed MetaTD, and
then qualitatively compare their predicted results to prove

that MetaTD are more accurate.

2.4.1 Accuracy Analysis

The classifying procedure of the normal top-down methods
is to recursively classify samples at a node into its children

nodes. However, the practical accuracy of such a procedure
is complicated and affected by many factors such as the
number and quality of the training examples, the distribu-

tion of children nodes, and so on [8]. So we simplify the
problem by assuming the average precision and recall of
the flat atomic classification are P andR, respectively. Since
the top-down classification is equivalent to cascaded flat

classifications, its accuracy can be expressed as follows:

PTD ¼ Ph;
RTD ¼ Rh;

where PTD and RTD are the precision and recall, respec-
tively, and h is the height of the hierarchy.

The classifying procedure of MetaTD consists of two

parts. The first part is to employ RcutTD (r � 2) to select
label candidates. The ratio of recalling right labels is Rh

r ,
where Rr is the recall of the atomic classification with the R-

cut thresholding strategy. The second part is to employ
metaclassification to decide the predicted labels. Assume
that the precision and recall of the metaclassification are PM
and RM , respectively, then the classification accuracy of
MetaTD is as follows:
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Fig. 4. Illustration of the proposed MetaTD: (a) class hierarchy and
(b) paths as metasamples.

TABLE 1
Representing Metasamples with Sparse Vectors



PMetaTD ¼ PM;
RMetaTD ¼ Rh

rRM:

In fact, Rrðr � 2Þ is fairly high in real-world hierarchical
classification tasks as investigated in Section 3.6. Therefore,
the performance of MetaTD is largely determined by that of
the metaclassification.

To investigate the performance of the metaclassification,
suppose there is a metasample represented by the following
sparse vector:

ðni1 :s1; ni2 :s2; . . . ; nik :sk; nav:sav;

nmi:smi; nar:sar npr:sprÞ;

where nki and si are a node and its value; nav,nmi, nar, and
npr are the additional features of average score, minimum
score, average ranking, and pass-rate, respectively.

ScutTD works the same way as the following metaclas-
sifier [8], [35]:

output ¼ true; if spr ¼ 1 for all i ¼ 1 . . . k;
false; otherwise;

�

where spr ¼ 1 means that the scores along the root-to-leaf
path sample all exceed the threshold values. Therefore, this
metaclassifier is equivalent to ScutTD.

RcutTD (r ¼ 1) works the same way as the following
metaclassifier:

output ¼ true if sar ¼ 0;
false otherwise;

�

where sar ¼ 0 means that the scores along the path all rank
at the first place. Therefore, this metaclassifier is equivalent
to RcutTD (r ¼ 1).

The metaclassification employs the machine learning
methods to find the optimal metaclassifiers [22], [28]. Since
the metaclassifiers equivalent to ScutTD and RcutTD (r ¼ 1)
are in its searching space, the metaclassification is able to
achieve higher classification accuracy.

2.4.2 Computational Complexity Analysis

Before analyzing the complexity of MetaTD, let us first
review the computational complexity of the normal top-
down methods [8], [11]. The training process is mainly to
train base classifiers whose complexity is as follows:

QTD
train ¼

Xh
i¼1

Xli
j¼1

O
�
n�ijm

�
�

where h is the height of the hierarchy (the root node is at the
0-th level), li is the number of nodes in the ith level, nij is
the number of training samples at the jth node of the ith
level, m is the number of features, and � and � are constants
determined by base classifiers.

Suppose the base classifiers are linear classifiers whose
computational complexity is linear in the number of
features. Then the classifying complexity of the normal
top-down methods can be expressed as follows:

QTD
classify ¼

Xh
i¼1

Xli
j¼1

Oð�ijmÞ;

where �ij is a 0/1 function indicating whether the father
node of the ith node at the jth level is invoked, which is
equivalent to whether this node is to be checked.

The classifying complexity of RcutTD has an upper
bound as follows:

QRcutTD
classify �

Xh
i¼1

OðrimÞ � Oðrhþ1mÞ ð5Þ

From (5), we can see that the complexity is decided by the
hierarchy. The upper bound is reached when the hierarchy
is a complete tree, that is, every node above the bottom level
is a parent node with no less than r child nodes.

Now, let us turn to the complexity analysis of the
proposed MetaTD. Its training process mainly consists of
training base classifiers like the normal top-down methods,
and an additional metatraining whose complexity is
determined by the size of metatraining set. Thus, the
training complexity of the proposed MetaTD can be
expressed as follows:

QMetaTD
train ¼ QTD

train þO
�
N�
s N

�
f

�
� QTD

train þO
�
rh�ðNDÞ�ðNnode þ 4Þ�

�
;

where r is the parameter of RcutTD, Ns is the number of
metasamples, Nf is the number of metafeatures, ND is the
size of the development set, and Nnode is the total number of
nodes in the hierarchy. Note that each metasample actually
has at most hþ 4 nonzero features, so the metatraining
must be quite fast if the proper training algorithms are
employed (see Section 3.7).

The classifying part of MetaTD is composed of an
RcutTD classification and a metaclassification. Suppose
the metaclassifier is also linear. The complexity of MetaTD
classifying can be expressed as follows:

QMetaTD
classify ¼ QRcutTD

classify þOðnrn0fÞ
� O

�
rhþ1m

�
þOðrhðhþ 4ÞÞ

¼ rhðrmþ hþ 4Þ;
ð6Þ

where nr is the number of label candidates per base
sample selected by RcutTD, and n0f is the number of
nonzero features.

3 EXPERIMENTS

In this section, after describing the data sets and experi-
mental settings, we present the performance comparison
between MetaTD and the baseline methods as well as the
existing records. We then report several auxiliary experi-
ments including more performance comparison and tuning
the settings of MetaTD.

3.1 Experimental Data Sets

Five real-world data sets of large-scale hierarchical classi-
fication are used in our experiments. Three of them are
online document classification tasks from the PASCAL
large-scale hierarchical text classification challenges
(LSHTC), and two of them are International Patent
Classification (IPC) tasks from the World Intellectual
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Property Organization (WIPO)5 and NII Test Collection for
IR Systems Project (NTCIR).6 Table 2 presents the scales of
these data sets. We briefly describe them below.

3.1.1 LSHTC Data Sets

LSHTC challenges aim at promoting the study of classifica-
tion methods for large hierarchies. The first challenge was
launched in 2009 [31], [41], the second in 2011 [42], and the
third in 2012. The descriptions of participant systems are
published through technical reports at the challenge’s
homepage and published papers at workshops of ECIR
2010 and ECML/PKDD 2011. The challenge data sets are
publicly available, but the labels of the test sets remain
undisclosed. The online result evaluation service remains
open to facilitate related research. This service is employed
to evaluate the experimental results on LSHTC data sets in
this paper.

The LSHTC1 DMOZ data set is built by crawling the web
pages annotated by the ODP project. The crawled docu-
ments are preprocessed through removing stop words,
stemming by the Libstemmer toolkit,7 and replacing the
tokens by numeric IDs. The LSHTC2 DMOZ data set is built
similarly, but the scale is much larger. The number of the
documents increases threefold, and the number of the
categories increases more than twofold. The LSHTC3
Wikipedia (median-size) data set is based on the Wikipedia
categorization.8 This data set uses the data from the open
resource of DBpedia [43].

3.1.2 IPC Data Sets

Accurate classification of patent documents is crucial both
to patent issuing and patent retrieval. The IPC taxonomy is
a hierarchical patent classification system created under
the Strasbourg Agreement in 1971 and administered by
WIPO at present. IPC divides all the technical fields
hierarchically into 8 sections, about 120 classes, 630
subclasses, about 7,000 groups and 69,000 subgroups [4],
[5], [6], [44], [45].

The WIPO-alpha data set consists of English patent
applications submitted to WIPO between 1998 and 2002.
The NTCIR IPC data set consists of 3,496,137 Japanese
patent applications submitted to Japan Patent Office from

1993 to 2002. This data set does not have a split of training

and test data sets, so we partition the set by a time

point—applications submitted from 1993 to 2001 as training

set and those submitted at 2002 as test set.

3.2 Experimental Settings

3.2.1 Base-Level Sample Representation

The most widely used text representation in text classifica-

tion, the bag-of-words model with the term weight of term

frequency—inverse document frequency (TF-IDF), is

adopted as the base-level sample representation [1], [36].

The following TFIDF formula suggested by [46] is adopted,

as our pilot experiments show that it yields slightly higher

classification accuracies than other variants.

TFIDFðt; dÞ ¼ nðt; dÞ log
jT j
nT ðtÞ

;

where t denotes a term, d denotes a document, T denotes

the training corpus, nðt; dÞ denotes the number of times t

that occurs in d, namely term frequency, and nT ðtÞ denotes

the number of documents where t occurs, named document

frequency. The length of representation vectors is normal-

ized to 1.
In LSHTC data sets, samples are presented in the form of

numeric stem IDs and their term frequencies. Thus, they

can be directly converted to the desired TFIDF bag-of-

words representations.
In IPC data sets, samples are presented in plain text, thus

they need to be tokenized, stemmed, and filtered to remove

stop words. English texts in WIPO-alpha are tokenized by

CoreNLP,9 stemmed by Porter stemmer [47],10 and filtered

by Snowball stop words [48]. Japanese texts in NTCIR are

tokenized and stemmed by Chasen [49],11 and then function

words are removed.

3.2.2 Performance Measurement and Baseline Method

The performance measurements and baseline methods are

different between single-labeled data sets and multilabeled

data sets. The LSHTC1 and DMOZ data sets are single-

labeled, thus the accuracy is taken as the performance

measurement. RcutTD with parameter r ¼ 1 is taken as the

baseline method [9].
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TABLE 2
Scales of Data Sets

5. http://www.wipo.int/classifications/ipc/en/ITsupport/
Categorization/dataset/wipo-alpha-readme.html.

6. http://research.nii.ac.jp/ntcir/index-en.html.
7. http://snowball.tartarus.org.
8. http://en.wikipedia.org/wiki/Wikipedia:FAQ/Categorization.

9. http://nlp.stanford.edu/software/lex-parser.shtml.
10. http://tartarus.org/~martin/PorterStemmer/.
11. http://chasen.naist.jp/hiki/ChaSen/.



The LSHTC3, WIPO, and NTCIR data sets are multi-
labeled, thus the micro-F1 is taken as the performance
measurement [1]. ScutTD is taken as the baseline method.

3.2.3 Settings of MetaTD

MetaTD selects label candidates through RcutTD as
described in Section 2.2.2. The parameter r of RcutTD is
set to 2 due to a tradeoff between the classification accuracy
and time cost. The experiments testing different rs are
present at Section 3.6.

The SVM implementation of Liblinear is adopted as the
metaclassifier [50].12 An investigation on various metaclas-
sifiers can be found in Section 3.7.

Meta-to-base interpreters are needed to transfer metale-
vel predictions into base-level labels. For single-labeled
tasks, it is natural to predict the labels with the largest
metalevel scores. For multilabeled tasks, the strategy of S-
cut in flat multiclass classification is employed. An optimal
threshold is first decided on development sets, aiming to
maximize micro-F1. Then, when classifying an instance,
any label with a metalevel score no less than that threshold
is predicted.

3.2.4 Other Settings

The base-level classifier is SVMlight with a linear kernel. This
classifier is widely used in text categorization because of its
efficiency and high accuracy. The cost factors are tuned by
development sets on LSHTC1 to make our experimental
results competitive with the challenge records, while the
default cost factors are adopted in the rest data sets.

Development sets are necessary for ScutTD and MetaTD.
LSHTC1 provides a development set. On LSHTC2-3 and
WIPO, we randomly pick out one-third of the training
samples from each class as development samples. On
NTCIR, we take the patent applications submitted at 2001 as
development samples.

The experiments are run on four 64-bit computers with
multicore 1.9-GHz AMD CPUs and 8G-64G memory. All
the experiments actually require up to 8G memory
according to our observations, except for the experiments
with larger parameter rs (see Section 3.6). During the
experiments, the independent computations such as train-
ing the base classifiers of the top-down methods are
conducted in parallel, and the equivalent serial running
times are calculated and taken as the time costs.

3.3 Performance on Entire Data Sets

3.3.1 Accuracy

Fig. 5a presents the classification accuracies of the normal
top-down methods (as baseline), MetaTD, and LSHTC1-3
participants.13 MetaTD achieves higher accuracies than the
baseline methods in all five data sets. The improvements on
the multilabeled data sets of LSHTC3, WIPO, and
NTCIR are significant, where the micro-F1s are raised by
36.2-57.3 percent. The improvements on single-labeled data
sets of LSHTC1 and LSHTC2 are less significant but still
obvious, where the accuracies are raised by 5.9 percent.

MetaTD are also competitive among LSHTC partici-
pants’ methods. MetaTD ranks the first in both LSHTC2-3,
and ranks the third in LSHTC1. In LSHTC1, one of the two
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Fig. 5. Performance on whole data sets: (a) classification accuracies (accuracy for LSHTC1-2; micro-F1 for LSHTC3, WIPO, and NTCIR), (b) training
time cost (in hours), and (c) classifying time cost (in hours).

12. http://www.csie.ntu.edu.tw/~cjlin/liblinear/. 13. Retrieved from http://lshtc.iit.demokritos.gr/ at June 29th, 2012.



methods that beat MetaTD is a combination of two flat
approaches—variants of the OOZ algorithm [51], [52] and
the passive-aggressive algorithm [53]. The other method is
not published by the participants.

Note that accuracy gaps among LSHTC1-3 participants’
methods are rather small, which implies accuracy improve-
ments are quite difficult. In LSHTC1, the baseline method
RcutTD would ranks eighth place though its accuracies are
only 0.025 lower than MetaTD. In LSHTC2, MetaTD
outperforms the best method of the participants in accuracy
by 0.053. In LHSTC3, MetaTD outperforms the best method
in micro-F1 by 0.010, while the best outperforms the second
by 0.006. Published papers show that LSHTC2 participants
employ methods such as simplified plat approaches [54],
[55], k-nearest neighbors [56], [57], but they have not tried
top-down methods.

3.3.2 Efficiency

Figs. 5b and 5c present the training and test time costs,
respectively. Note that for top-down methods, training is
usually much more time-consuming than test. Therefore,
the training time costs are more concerned by us.

The training time costs are mainly spent on training base
classifiers for both the normal top-down methods and
MetaTD, while the cost spent by MetaTD on metaclassifica-
tion is small by contrast. On the multilabeled data sets of
LSHTC3, WIPO, and NTCIR, MetaTD’s time costs are 4.3-
7.5 percent larger than those of the baseline method
ScutTD. It is because that both MetaTD and ScutTD need
to train base classifiers twice, once on the monotraining sets
and the other on the union sets of the development and
training samples. On single-labeled data sets of LSHTC1-2,
MetaTD’s time costs are 70.0-82.6 percent larger than those

of baseline method RcutTD. It is because RcutTD saves the

time costs of training base classifiers on the monotraining

sets as it has no parameters to tune.

3.4 Performance for Increasing Number of Classes

This section compares the performance of the one-versus-

rest method, the normal top-down methods and MetaTD.

Given the high computational complexity of the one-versus-

rest method, several subsets are made from data sets

LSHTC1 and NTCIR.
The subsets of LSHTC1 are made as follows: First, all the

10,159 classes that have at least three training samples are

collected. Second, a desired number of classes are randomly

picked out. Finally, the samples of these classes are divided

into training, development, and test sets with the ratio of

3:1:1, while each set has at least one sample per class. The

subsets of NTCIR are made similarly with the training,

development, and test samples, respectively, picked from

the data set of the years 1998, 1999, 2000, 2001, and 2002.
The experimental settings are consistent with the pre-

vious experiments. The experimental results are presented

in Fig. 6. In classification accuracy, MetaTD is close to one-

versus-rest. In particular, MetaTD slightly outperforms one-

versus-rest on both data sets when the number of classes

exceeds 5,000. As for the normal top-down methods, their

accuracies are 6-30 percent lower than those of one-versus-

rest as expected.
In computational complexity, MetaTD is close to ScutTD

and RcutTD, and all these top-down methods show a great

superiority over the one-versus-rest method on both the

training and classifying time costs as expected.
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Fig. 6. Performance comparison of the one-versus-rest method, the normal top-down methods and MetaTD on subsets of various sizes: (a) through,
(c) for LSHTC1; (d) through, (f) for NTCIR.



3.5 Performance Comparison with Related Work

This section compares the performance of MetaTD with

those of the related work. Seven enhanced top-down

methods are tested, including minimum score function,14

multiplicative score function [33], restricted voting, thresh-

old reduction, extended multiplicative method [32], flatten-

ing hierarchy [30], [58], and refined expert [14] (see

Section 4 for details). Due to the high computational

complexity of some methods, the experiments are con-

ducted in the subsets made in the last section. The threshold

reduction and extended multiplicative method proposed by

Sun et al. [32] are based on the thresholding strategy of

ScutTD, which are proper for multilabeled classification.

Therefore, they are tested only on the subset of NTCIR.
The results are presented in Fig. 7. On the aspect of

effectiveness, MetaTD achieves the highest accuracy in both
data sets. The second best methods are flattening hierarchy
on the LSHTC1 subset and threshold reduction on the NTCIR
subset, respectively. On the aspect of efficiency, the time
consumed by MetaTD is close to that of the normal top-down
methods, and much less than that of threshold reduction,
refined expert, restricted voting, and flattening hierarchy.

3.6 Select Label Candidates with Different rrs

MetaTD employs RcutTD to select label candidates. Para-
meter r of RcutTD is the maximum number of children that
can be invoked from a parent node.

Larger r will recall more correct labels for the metaclas-
sification phrase, but the time cost will also be increased.

This paper sets the parameter r to 2 mainly based on the
following heuristics. First, on the multilabeled data sets
LSHTC3, WIPO, and NTCIR, the average numbers of
correct children per invoked parent node are 1.340, 1.171,
and 1.258, respectively. Second, two children per parent
node can cover 92.0 percent, 98.0 percent and 89.6 percent of
parent-child relations on these data sets, respectively.

To examine such setting, the experimental results with
different rs are presented in Table 3. The time costs are
increased by using larger rs, but the classification accuracies
do not rise significantly. Therefore, the setting of r ¼ 2 is
proper for all five data sets.

3.7 Choice of Metaclassifiers

This section explores which classifier can provide high
accuracy as well as short training time on the metaclassi-
fication tasks of MetaTD. Three classifier implements,
including Liblinear [50], the Stanford classifier [59],15 and
SVMlight [60], are evaluated. Liblinear and SVMlight are both
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Fig. 7. Time cost versus classification accuracy (red: MetaTD, green: related works, and blue: normal top-down methods): (a) results on the subset
of LSHTC1 (10k classes) and (b) results on the subset of NTCIR (10k classes).

TABLE 3
Experiments of MetaTD with Different Feature Combinations and rs

14. The originally proposed function is the Boolean function, and this
paper replaces it by the continuous counterpart—the minimum function—-
to achieve higher accuracy. 15. http://nlp.stanford.edu/software/classifier.shtml.



support vector machine (SVM), and the Stanford classifier
is a maximum entropy classifier. Besides, the solver of
SVMlight works on the dual quadratic optimization problem
of SVM training, while the solvers of the rest two
implements work on the primal optimization problem.16

The experimental results are presented in Table 3. On the
aspects of classification accuracy, three implements provide
close accuracies, while the SVM classifiers of Liblinear and
SVMlight are slightly more accurate than the Stanford
maximum entropy classifier.

On the aspects of training time costs, SVMight spends far
more time than the other two implements. It is because that
the metatraining sets of MetaTD have far more samples
than features. As the solver of SVMlight works on the dual
problem of SVM training, whose complexity is greatly
determined by the numbers of samples, it is slow in
training. Note that, the normal text classification tasks
usually have far more features than samples, which is the
reason why SVMlight chooses to solve the dual problem.
This experimental result confirms the information at
LibLinear’s homepage.17

3.8 T-Test Evaluation

The accuracy improvements over the baseline methods on
LSHTC1 and LSHTC2 are small according to Fig. 5a.
Therefore, the t-test evaluation is employed to find out
whether such improvements are significant. The labels of
the test samples of LSHTC1 and LSHTC2 are not revealed,
thus we randomly pick up two-third labeled samples as
training samples, and take the rest as test samples. The
experiments are repeated for five times, the results of which
are presented in Table 4. Paired-sample (or dependent
sample) t-test reveals statistically significant differences
between the performances of the baseline method and the
proposed MetaTD, tð4Þ ¼ 4:604 and p ¼ 0:005.

4 COMPARISON WITH RELATED WORK

In this section, the related work on the top-down methods
and metaclassification is reviewed and compared with the
proposed MetaTD. Several enhanced top-down methods
are described and discussed here.

4.1 Top-Down Methods

Many researchers have proposed the variants of the top-
down methods to overcome the deficiency of classification
accuracy. Dumais and Chen investigate the method of
classifying test samples by a universal scoring function of
paths [33]. They test Boolean and multiplicative functions
on a two-layered hierarchical web page classification task

where the Boolean function turns out to perform a bit better.
MetaTD is inspired by their work, while the universal
scoring function is replaced with the metaclassification to
improve the classification accuracy.

Sun et al. improve the top-down method by addressing
the so-called blocking problem [32]. The blocking problem
refers to the phenomenon that samples are wrongly rejected
by the high-layered classifiers and cannot be passed down;
it is part of the error-propagation problem. They propose
three solutions. The first one, named the restricted voting
method, is to modify the hierarchy through linking nodes
with their grandchild nodes (see Fig. 8a). The modified
hierarchy makes samples easier to be passed down, while
the computational complexity is largely increased at the
same time. The second solution, named the threshold
reduction method, is to exhaustively search for the optimal
combination of thresholds. The intuition is that the thresh-
olds at higher layers should be smaller than those at lower
layers to let more samples pass. To minimize the number of
threshold combinations, the classifiers at the same layer are
required to use the same threshold value. The third solution,
named the extended multiplicative method, is to associate a
local classifier with the parent’s classifier. When the product
of the two classifier’s probabilistic scores is accepted by the
thresholding strategy, the sample is passed down.

Wang and Lu, and Malik flatten the hierarchy to raise the
classification accuracy of the top-down methods [30], [58].
This method is a compromise between the flat and
hierarchical classifications. The flattened hierarchy is closer
to a flat structure and has less layers, thus the problem of
error propagation is relived (see Fig. 8b). However, the
computation complexity is also increased and becomes
closer to that of the flat classification. Wang and Lu
investigate the strategy of flattening, and conclude that
removing the nodes from the higher layers brings more
accuracy improvement [30].

Bennett and Nguyen also propose a metaclassification
enhanced top-down method named refined expert [14].
They first build a tree of classifiers through the standard top-
down training, and then build another tree of metaclassi-
fiers, which are trained by the combination vectors of
samples’ normal representations and their predictions from
the lower nodes in the first tree (see Fig. 8c). The intuition is
that the scores of the lower nodes should be taken into
consideration while making decisions at high layers. Refined
expert retrains the base classifiers through metaclassifica-
tion, so its computation complexity times that of the normal
top-down methods, much higher than that of the proposed
MetaTD as shown by the experimental results.

4.2 Metaclassification

Metaclassification is a classification method that takes the
outputs of the existing classifiers as inputs to better learn
target signals. Metaclassification has been widely used to
improve flat multiclass classification [21], [23], [24], [25], [26],
[27], [28], [29]. Suppose there is a classification problem of nc
classes. First nbc base classifiers are trained for each class by
employing different classifiers or manipulating the input
features. Then a metaclassifier is trained for each class by
learning the predictions of all base classifiers, i.e., an nbc � nc
matrix of predictions. In addition, fixed combination rules
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TABLE 4
T-Test on LSHTC1 and LSHTC2

16. Liblinear also provides solvers on the dual problems.
17. http://www.csie.ntu.edu.tw/~cjlin/liblinear/FAQ.html.



such as summation and mean have also been used to
combine multiple classifiers instead of training metaclassi-

fiers [16], [18], [19], [20], [22].
The proposed MetaTD apply metaclassification to top-

down methods in a different way from the general usage.
As far as we know, metaclassification has not been used
in top-down methods before. The main differences are
as follows:

. Base classifiers are attached to internal nodes instead
of classes. Besides, the number of base classifiers is
huge. As a solution, a sparse vector is adopted as the
representation of metasamples.

. Numbers of classes are so large that training one
metaclassifier per class is infeasible. Instead, a global
metaclassifier for all classes is trained.

. To raise classification accuracy, besides the scores of
base classifiers, the average and minimum values of
these scores that are derived from fixed combination
rules, are also taken as metafeatures.

5 CONCLUSIONS AND FUTURE WORK

This paper proposes a meta-top-down method (MetaTD) to

relieve the error-propagation problem of the normal top-
down methods while retaining their capability for large-scale
hierarchical classification. In the accuracy analysis, MetaTD
is proved to subsume the normal top-down methods,
ensuring that it can provide higher classification accuracy.

The experimental results show that, on the aspect of

classification accuracy, MetaTD outperforms ScutTD on
multilabeled data sets by 36.2-57.3 percent, and outperforms
RcutTD on single-labeled data sets by 5.9 percent. The
comparison with the results from LSHTC1-3 challenges
indicates that MetaTD is among the state-of-the-art meth-

ods. On the aspect of computational complexity, MetaTD
raises the training time costs of ScutTD and RcutTD by 4.3-
7.5 percent and 70.0-82.6 percent, respectively. Such
performance is competitive among the related work.

In the future, we will apply MetaTD to more large-
scale hierarchical classification tasks, particularly the
nonmandatory leaf classification tasks such as Yahoo!

categories. We expect that developing a flexible method
of selecting label candidates for MetaTD will be a
promising solution.
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