
A Modular Reduction Method

for k-NN Algorithm

with Self-Recombination Learning

Hai Zhao and Bao-Liang Lu⋆

Department of Computer Science and Engineering, Shanghai Jiao Tong University,
800 Dong Chuan Rd., Shanghai 200240, China

bllu@sjtu.edu.cn

Abstract. A difficulty faced by existing reduction techniques for k-NN
algorithm is to require loading the whole training data set. Therefore,
these approaches often become inefficient when they are used for solv-
ing large-scale problems. To overcome this deficiency, we propose a new
method for reducing samples for k-NN algorithm. The basic idea behind
the proposed method is a self-recombination learning strategy, which is
originally designed for combining classifiers to speed up response time
by reducing the number of base classifiers to be checked and improve the
generalization performance by rearranging the order of training samples.
Experimental results on several benchmark problems indicate that the
proposed method is valid and efficient.

1 Introduction

Given a training set of previously labeled samples and an unknown sample x,
the k-nearest neighbor (k-NN) algorithm assigns the most frequently represented
class-label among the k closest prototypes to x. The k-NN algorithm and its
derivatives have been shown to perform well for pattern classification in many
domains over the last 40 years. In theory, the k-NN algorithm is asymptotically
optimal in the Bayesian sense [1]. In other words, k-NN performs as well as
any other classifier, provided that there is an arbitrarily large number of (rep-
resentative) prototypes available and the volume of the k-neighborhood of x is
arbitrarily close to zero for all x.

Basically, the k-NN algorithm needs the entire training set as the represen-
tative set. Therefore, the space requirement of storing the complete set and the
high computational cost for the evaluation of new samples are often criticized.
The k-NN algorithm also shows sensitivity to outliers, i.e. noisy or even erro-
neously labeled prototypes. To overcome these drawbacks, various techniques
have been developed. Two main types of algorithms can be identified: prototype
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generation and prototype selection. The first group focuses on merging the ini-
tial prototypes into a small set of prototypes, so that the performance of the
k-NN algorithm is optimized. Examples of such techniques are k-means algo-
rithm [2] and learning vector quantization algorithm [3]. The second group aims
at the reduction of the initial training set and/or increasing the accuracy of the
NN prediction. Various editing and condensing methods were developed, such as
condensing algorithm [4] and editing algorithm [5]. Wilson et al. recently gave a
good review for all these reduction techniques for the k-NN algorithm [6].

All of these existing reduction algorithms, however, still need to store the
whole training set firstly to meet the requirement of fast processing. The reason
is that all of them are actual k-NN based self-test of the training set. Therefore, if
there is any no parallel or modular techniques introduced to the k-NN algorithm,
those existing k-NN reduction techniques can not efficiently perform reduction
of a large-scale data set.

A modular k-NN algorithm has been proposed in our previous work [7]. Of
course, this modular k-NN algorithm is mainly suitable to dealing with very
large-scale data sets, and a user can not divide a training data set into too many
subsets in order to maintain a stable combining accuracy. Otherwise, some as-
sistant techniques, such as clustering, should be introduced to help the partition
of the training data set [8][9]. However, all clustering procedures also require
additional computing time and the same storage space unless there is a parallel
or modular version of clustering algorithm. In one word, unless we can directly
solve the reduction problem for the k-NN algorithm or there exists a method
which can carry out both partition and reduction at the same time, we will face
many other concomitant problems.

In this paper, s self-recombination learning scheme based reduction method
is proposed for overcoming above difficulties. The proposed method is based on
combining classifier from the quadratic decomposition of two-class task. It is also
a framework of parallel or modular self-test based on the k-NN algorithm.

2 Combining Classifier

Since any multi-class classification problem can be solved by using two-class clas-
sification techniques according to well known one-against-rest and one-against-
one task decomposition methods. Especially, the one-against-one task decompo-
sition method has been an innate parallel and modular processing method for
binary classifier modules. Thus, we will only concern with two-class combining
classifier in the remained part of this paper.

We firstly discuss the decomposition of a two-class classification task. Let
X+ and X− be the given positive and negative training data sets, respectively,
for a two-class classification task T ,

X+ = {(x+
i , +1}l+

i=1, X− = {(x−

i , −1)}l−

i=1 (1)



where x
+
i ∈ R

n and x
−

i ∈ R
n are the input vectors, and l+ and l− denote

the numbers of positive training samples and the number of negative training
samples, respectively.

X+ and X− can be partitioned into N+ and N− subsets respectively,

X+
j = {(x+j

i , +1)}
l
+

j

i=1, j = 1, . . . , N+ (2)

X−

j = {(x−j
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l
−

j
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where ∪N+

j=1X
+
j = X+, 1 ≤ N+ ≤ l+, and ∪N−

j=1X
−

j = X−, 1 ≤ N− ≤ l−.

Matching all these subsets, X+
i and X−

j , where i = 1, . . . , N+ and j =

1, . . . , N−, can yield N+×N− relatively smaller and more balanced (if needed)
two-class subsets pairs. Each of them can be expressed as

T (i,j) = X+
i

⋃
X−

j , i = 1, . . . , N+, j = 1, . . . , N− (3)

Assign a k-NN classifier as a base classifier to learn from each subset T (i,j).
In the learning phase, all of the k-NN base classifiers are independent from each
other and can efficiently work in a parallel way. We also denote the corresponding
k-NN base classifier as T (i,j), if there is not any misunderstanding.

For the convenient, these base classifiers, T (i,j), j = 1, · · · , N−, are defined
as ‘positive group’ and i is defined as its group label, and those base classifiers,
T (i,j), i = 1, · · · , N+, are defined as ‘negative group’ and j is defined as its group
label.

Intuitively, if all classifiers in a positive group support the decision output
of positive class for an unknown input sample (notice that this is a very strong
condition), then to assign this unknown sample the positive class label is very
natural. It is the same for a negative sample and its related negative group.
We call a positive group whose all member base classifiers support the positive
class as a ‘positive winning group’ and a negative group whose all member base
classifiers support the negative class as a ‘negative winning group’.

It should be noted that it is impossible that positive and negative winning
groups exist at the same time, because these two groups must share one same
base classifier and this classifier can not output two different classification results
at the same time.

To finish a combination without any preference, we define the combination
strategy as follows. The combining output of the positive class is determined by
the condition that no negative winning groups exist, and the combining output
of the negative class is determined by the condition that no positive winning
groups exist. Sometimes, neither positive nor negative winning group exits in
application, that is the reason why we make the definitions with the negatory
conditions.

In order to effectively handle the case that no winning group exists and realize
an efficient combination, the following symmetrical selection algorithm is given
as a practical realization of the above combining strategy.



1) Set the initial labels, i = 1 and j = 1.
2) Repeat the following operations:

(a) Check the base classifier T (ij).
(b) If T (ij) supports the positive class, then j = j + 1.
(c) If T (ij) supports the negative class, then i = i + 1.
(d) If i = 1 + N+, then the combining output is negative class and the

algorithm ends here.
(e) If j = 1 + N−, then the combining output is positive class and the

algorithm ends here.

We now show that the number of checked base classifiers in symmetrical
selection algorithm for each input sample will be never larger than N++N−−1.
As an intuitive expression, we imagine that all outputs of base classifiers are
represented in a binary matrix with N− columns and N+ rows. It is obvious
that the algorithm is equally a search procedure in the matrix, in which the
start point is the top-left corner and the end point is near the bottom-right
corner. Each checking for a base classifier means one row or one column in the
matrix must be excluded. The search direction will turn to the next row or
column without any backtracking after each checking. Consider the maximum-
length search from the top-left corner to the bottom-right corner in the matrix.
This maximum-length search will cover N+ + N− − 1 elements. That is, the
number of checked base classifiers in symmetrical selection for an input sample
will not be larger than N+ + N− − 1, which is much less than the number of all
base classifiers, N+ × N−.

The theoretical analysis in our existing study has actually given a probability
model for symmetrical selection based combination through the performance
estimation of two-class combining classifier [10].

3 Reduction with Self-Recombination Learning

Self-recombination learning (SRL) originates such a simple idea. Consider the
searching procedure of symmetrical selection algorithm in the outputs matrix
of all base classifiers, the start point is the base classifier in the top-left corner,
and the end point will be located in the most right column or the most below
rows. We may notice if a base classifier is nearer to the bottom-right point of the
output matrix, it will have the less chance to be checked and the less capability
to determine the final combination output. Thus, we may obtain the higher
combining accuracy by arranging those base classifiers with higher error rate
to the more right columns and the more below rows. Finally, we may remove
the learning of those base classifiers from ‘bad’ samples to realize the sample
reduction.

The proposed reduction algorithm with self-recombination learning can be
described as follows.

1) Specify the volumes of all subsets.



2) Set the maximum turns of self-learning, M , and the counter of the self-
learning times, t = 1.

3) While t < M , do
(a) Extract specified number of training samples in order from either training

set to yield all training subsets of individual class.
(b) Record the classification outputs of all k-NN base classifiers for all sam-

ples in the training set.
(c) Record the combining outputs of all samples of the training set according

to the symmetrical selection combination.
(d) Put all incorrectly classified samples in the rear part of the set for both

positive and negative training sets.
4) Remove all k-NN base classifiers learning from incorrect classified samples.

There are still two potential problems remained in the above self-learning
scheme. One is how to determine the stop criterion of SRL. We experimen-
tally suggest that a stable training accuracy can be taken as such a criterion.
The other is how to rearrange the correctly classified samples in proper order.
Always, we can finish these two tasks in one step, moving the correctly or incor-
rectly classified samples to the corresponding parts and rearranging the order of
the samples in either part. We call such procedure as moving and rearranging
algorithm (MRA). Assume the number of all samples is NMax, a suitable MRA
for the less exchange times and the relatively stable learning can be described
as follows.

1) Set the serial number of the sample to be handled, i = 1.
2) While i <= NMax, do

(a) If the sample i is correctly classified, then i = i + 1. Otherwise, do
i. Set the counter, C = 0, and the serial number, j = i + 1.
ii. If the sample j is correctly classified, then exchange samples i and j

and goto a), Otherwise, let j = j + 1 and C = C + 1.
iii. If C = NMax − j, then the algorithm ends here. Otherwise, go to ii..

4 Experiments

Two data sets as shown in Table 1 from UCI Repository [11] and STATLOG
benchmark repository [12] are chosen for this study. To carry out decomposition
of the training data set, the smaller class is divided into some equal size subsets,
and the larger class is also equally divided into some subsets with the same size
as the subsets of smaller classes. In k-NN algorithm, the optional values of k are
set to 7, 13, 19, and 25, respectively.

Comparisons of classification accuracy after reduction through multi-turn
self-recombination learning on every data sets are shown in Figs. 1. The experi-
mental results show that the more stable and higher combining accuracy appears
as the iteration of self-recombination learning increases.

To show the classification accuracy of reduction is superior to the classifica-
tion accuracy of using the whole samples, we give a comparison study on two



Table 1. Distributions of the samples in each class on all data sets

Data Set Number of Training Samples Number of Test Samples #Input

Total Positive Negative Total Positive Negative

Breast cancer 20000 14118 5882 7700 5482 2218 9

Census income 20107 15102 5005 10055 7552 2503 14
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Fig. 1. Classification accuracy after reduction through multi-turn self-recombination
learning and different scale partition. (a) Census income data set, where k = 7 and (b)
Breast Cancer data set, where k = 25.

cases. The experimental results shown in Fig. 2 verifies the fact that the re-
duction is effective on Census income data set. Actually, the comparison results
are the same for the other values of k on Census income and other data sets.
However, the comparison results for the other two data sets are very close, since
their original classification accuracies have been very high.

Comparisons of test accuracy with reduction and training accuracy (also
is the storage percentage after reduction) after multi-turn self recombination
learning on every data sets are shown in Fig. 3. The experimental results show the
consistent trend for the training accuracy and the test accuracy, which suggest
that a stable training accuracy does be taken as the stop criterion of self learning.

5 Related Work

We use a ‘quadratic’ decomposition of two-class training data set, that is, the
number of produced subsets or base classifiers are the product of each number
of single-class subsets. Min-max modular (M3) classifier [13] is also a kind of
quadratic decomposition based combining classifier. The difference between the
proposed combining classifier and M3 classifier is in the combination strategy.
Min-max combination in M3 classifier needs to check O(N+ × N−) base clas-
sifiers for an input sample, while symmetrical selection combination only needs
N+ +N−−1 at most. In addition, the min-max combination prefers the output
of negative class label for the reason that the min-max combining procedure is
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Fig. 2. Comparison of test accuracy
with reduction and without reduction
on Census income data set, k = 7.
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Fig. 3. Comparison of training accu-
racy (storage percentage) and test ac-
curacy in Census income data set, the
smaller class is divided into 8 parts.

asymmetrical for two different classes. As for the combining accuracy, our exper-
imental results show two combination strategies are very similar at most cases,
and symmetrical selection combination is some better at some unbalanced cases.

Surely, the quadratic decomposition is not a common task decomposition
method. Most combining classifiers are based on a ‘linear’ decomposition of train-
ing data set, that is, the whole training data set is divided into some parts [14].
This kind of decomposition produces less subsets and base classifiers. However,
it will lose some flexibility to control ratio of the numbers of samples among ev-
ery classes, while the quadratic decomposition is just on the contrary. Of course,
linear decomposition can not provide the mechanism of the reduction method
developed in this paper.

Some recent works are also concerned with modular reduction [15]. The dif-
ference between our work and the existing approach is that it only considers
an extreme case that each subset contains only two different samples and this
approach is only suitable for 1-NN reduction, while our scheme is more general.
In the extreme case, the combining classifier in [15] equally performs like a 1-
NN classifier. Therefore, it is not strange that self-recombination learning based
reduction in such case is equal to edited nearest neighbor rule of Wilson [16].

6 Conclusions

A modular and parallel reduction method with self-recombination learning for
k-NN algorithm has been proposed in this paper. One of the most important
features of the proposed method is that the adjustment of partitioned training
data set and the reduction task can be done at the same time, while the scales
of all decomposed training subsets can always be kept unchanged. Thus, the
proposed method is also an effective modular k-NN algorithm. As for the future
work, we expect for a more quick and stable moving and rearrangement algorithm
to improve self-recombination learning. More effective stop criterion of SRL is
required, too.
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